scholarly journals Reduce the Planar Anisotropy of AA6016 Aluminum Sheets by Texture and Microstructure Control

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1027
Author(s):  
Xiaoge Duan ◽  
Haitao Jiang ◽  
Zhenli Mi ◽  
Lei Cheng ◽  
Jiayi Wang

In order to produce a more isotropic Al-Mg-Si alloy sheet in the T4 temper, pre-annealed AA6016 hot rolled strips were cold rolled by conventional rolling, transverse rolling and an alternative rolling schedule. In this work, a weak and random texture was obtained in the alternative rolling sample, which was treated by solution treatment, as well as a fine and homogeneous recrystallized grain structure that reduced the earing percentage from 8.2% to 2.7%. An earing test was used to characterize the planar anisotropy of the AA6016 alloy. The crystallographic texture and microstructure of the AA6016 aluminum sheet were analyzed by X-ray diffraction and electron back scatter diffraction (EBSD) techniques. The earing percentage was reduced and eight-fold ears were produced in unidirectional rolled samples with strong β-fiber textures. Conversely, a higher earing percentage and four-fold ears were obtained for the alternative rolled sample, which was characterized by an appropriate combination of the Cube {001}<100> and stabilized BND {011}<3`22> [(φ1,¢,φ2) = (42°,45°,0°)] orientations. The main reason for the distinct earing profiles was the grain spatial distribution of textures formed during the cold rolling process. The dynamic recovery of the AA6016 alloy was promoted and both the nucleation and subsequent growth of the Cube orientation were suppressed by alternative rolling.

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Ming Chen ◽  
Xiaodong Hu ◽  
Hongyang Zhao ◽  
Dongying Ju

A large reduction rolling process was used to obtain complete dynamic recrystallization (DRX) microstructures with fine recrystallization grains. Based on the hyperbolic sinusoidal equation that included an Arrhenius term, a constitutive model of flow stress was established for the unidirectional solidification sheet of AZ31 magnesium alloy. Furthermore, discretized by the cellular automata (CA) method, a real-time nucleation equation coupled flow stress was developed for the numerical simulation of the microstructural evolution during DRX. The stress and strain results of finite element analysis were inducted to CA simulation to bridge the macroscopic rolling process analysis with the microscopic DRX activities. Considering that the nucleation of recrystallization may occur at the grain and R-grain boundary, the DRX processes under different deformation conditions were simulated. The evolution of microstructure, percentages of DRX, and sizes of recrystallization grains were discussed in detail. Results of DRX simulation were compared with those from electron backscatter diffraction analysis, and the simulated microstructure was in good agreement with the actual pattern obtained using experiment analysis. The simulation technique provides a flexible way for predicting the morphological variations of DRX microstructure accompanied with plastic deformation on a hot-rolled sheet.


2011 ◽  
Vol 194-196 ◽  
pp. 16-19 ◽  
Author(s):  
Fei Gao ◽  
Wei Na Zhang ◽  
Zhi Bo Zhang ◽  
Zhen Yu Liu ◽  
Guo Dong Wang

The influence of finish rolling temperature on the precipitates and Lüders elongation in ultra purified ferritic stainless steels stabilized with Ti and V has been investigated, in which the hot rolled bands were produced by conventional rolling process and the finish rolling at relatively low temperatures. It was shown that finish rolling at relatively low temperatures promoted the formation of a large number of fine MC precipitates, which were denser in dispersion and finer in size than those formed in conventional rolling process by strain-induced precipitation, and consequently scavenging of interstitial atoms in solid solution, indicating that the finish rolling at relatively low temperatures can be the effective way to significantly reduced Lüders elongation for the final sheets. These results have been confirmed by the internal friction measurements.


2021 ◽  
Vol 118 (2) ◽  
pp. 211
Author(s):  
Xiaofeng Wang ◽  
Hong Liu ◽  
Xiaobo Tang

This paper investigates a comparison study of microstructure, texture and mechanical properties between two 6xxx aluminum alloys through microstructure, texture characterization and tensile test. The results show that they exhibit different microstructure, texture and mechanical properties. In comparison with the alloy sheet with a low weight ratio of Mg to Si (Si-excess), the alloy sheet with a higher weight ratio of Mg to Si (Mg-excess) and additional Zn possesses the finer as-casting and solution treated equiaxed grain structure, less particles with larger size before solution treatment, weaker recrystallization texture mainly including Cube {001}<100> orientation and weaker mechanical properties. The low weight ratio of Mg to Si corresponds to slightly higher yield strength and ultimate tensile strength, but much higher plastic strain ration r, work hardening exponent n values and elongation. Interestingly, Portevin-Le Chatelier (PLC) effect is very prevailed in the alloy sheet with a higher weight ratio of Mg to Si and additional Zn, which is responsible for the low elongation and r value. The alloy containing a low weight ratio of Mg to Si may be beneficial to improve comprehensive mechanical property.


2010 ◽  
Vol 654-656 ◽  
pp. 1243-1246 ◽  
Author(s):  
Seung Won Lee ◽  
Daichi Akama ◽  
Z. Horita ◽  
Tetsuya Masuda ◽  
Shoichi Hirosawa ◽  
...  

This study presents an application of high-pressure torsion (HPT) to an Al-Li-Cu-Mg alloy (2091). The alloy was subjected to solid solution treatment at 505oC for 30 minutes and was processed by HPT under 6 GPa for 5 revolutions at room temperature. The hardness increased with straining and saturated to a constant level at 225 Hv. Aging was undertaken on the HPT-processed alloy at 100, 150 and 190oC for the total periods up to 9.3 days. The aging treatment led to a further increase in the hardness to ~275 Hv. It is shown that the simultaneous strengthening of the alloy due to grain refinement and age hardening was successfully achieved by application of HPT and subsequent aging treatment. The enhancement of the strength is prominent when compared with the application of a conventional rolling process.


2020 ◽  
Vol 117 (5) ◽  
pp. 508
Author(s):  
Libo Yu ◽  
Lin Chen ◽  
Hebin Wang ◽  
Xiaofeng Wang ◽  
Wenfei Peng ◽  
...  

The influence of Fe-rich particles on the microstructure evolution, texture and mechanical properties of Al–Mg–Si–Cu alloys was investigated by means of microstructure, texture and mechanical property analysis in the present study. The results show that Fe-rich particles have a significant influence on the microstructure evolution, texture, and final mechanical properties. Although both alloy sheets with different numbers of Fe-rich particles possess the similar microstructure including grain structure and fine particle distribution before solution treatment, the alloy sheet with a large number of Fe-rich particles possesses finer equiaxed grain structure in comparison with the alloy sheet with a medium number of Fe-rich particles after solution treatment. The solution treated alloy sheet with a medium number of Fe-rich particles is mainly comprised of CubeND {001}<310> orientation, while the solution treated alloy sheet with a large number of Fe-rich particles possesses weaker texture consisting of CubeND and Goss {110}<001> orientations. Fe-rich particles are beneficial to improve yield strength, ultimate tensile strength and r value, whereas reduce n and Δr values. Finally, the effect of Fe-rich particles on recrystallization microstructure and texture was analyzed.


2017 ◽  
Vol 898 ◽  
pp. 1236-1241 ◽  
Author(s):  
Y.Y. Liu ◽  
Y.F. Liang ◽  
S.B. Wen ◽  
Feng Ye ◽  
J.P. Lin

Fe-6.5wt.%Si alloy is an excellent soft magnetic material. Due to the appearance of ordering structures, the alloy shows poor ambient temperature ductility, and can only be cold rolled by specific rolling process. The rolling process with heat treatment is complex and time consuming. Meanwhile, high-energy electropulsing shows electroplastic effect. Heat treatment effect of the high-density electropulsing on microstructure and mechanical properties were investigated. The hot rolled sheet with 1 mm in thickness could be uniformly recrystallized in 33 s at 690 oC by appropriate high density pulses and the ductility was improved in comparison to the conventional heat treatment in a furnace. After the electropulsing treatment, the hot rolled sheet could be warm rolled by 50% reduction of the thickness after one pass without edge crack.


2006 ◽  
Vol 116-117 ◽  
pp. 235-238 ◽  
Author(s):  
Ha Guk Jeong ◽  
Y.G. Jeong ◽  
Duk Jae Yoon ◽  
Seo Gou Choi ◽  
Woo Jin Kim

Magnesium alloy AZ31, which processed by conventional rolling or extrusion, has high anisotropy of mechanical properties in its strength and elongation at room temperature. We compared the influence of differential speed rolling with conventional rolling process on microstructure and mechanical properties of commercial AZ31 sheet. Commercial AZ31 alloy sheets were processed with conventional and differential speed rolled with thickness reduction ratio of 30% at a various temperature. The elongation of AZ31 alloy, warm-rolled by differential speed rolling is larger than rolled by conventional rolling. Besides, grain size and distribution on microstructure of the conventional rolling were coarsely(~30μm) and inhomogeneously but, that those of the differential speed rolling were fine(~13μm) and homogeneously.


2014 ◽  
Vol 788 ◽  
pp. 311-316 ◽  
Author(s):  
Fu Qiang Yang ◽  
Ren Bo Song ◽  
Lei Feng Zhang ◽  
Chao Zhao

A study was made of the effects of solid solution treatment on the properties of hot rolled Fe-Mn-Al steel and on the microstructure transformation. In the steel, the austenite matrix and ferrite duplex phases were confirmed by micrographs and X-ray diffraction. It was indicated that the hot rolled Fe-Mn-Al steel (6.55g/cm3 in density) is with mechanical properties of tensile strength 1315.6MPa, elongation 14.60%. The tensile strength decreases with increasing temperature. The tensile test displays an outstanding combination of high strength and ductility at room temperature due to continuous strain hardening behavior. The product of tensile strength and ductility can reach 46.5GPa·%. Solution treatment contributes to the dissolution of precipitate, austenite grain growth and banded ferrite crushing.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Adrienn Hlavacs ◽  
Mate Szucs ◽  
Valeria Mertinger ◽  
Marton Benke

The formation of uneven cup heights during deep drawing is called earing. This phenomenon is caused by the planar anisotropy of formability in sheets, which is the result of crystallographic texture. In addition to analytical and finite element methods, a simple and quick method was developed recently to predict the earing profile of Al sheets solely from the data of {200} pole figures. So far, the method was applied on final state sheets cold rolled to 0.3–3 mm thickness and subsequently annealed. Within this manuscript, the earing prediction method is applied on 3003 type Al sheets with the thickness of ~6 mm, being in the hot-rolled state. Texture examinations were performed at different depths, from which earing profiles were calculated. For comparison, earing profiles were calculated from Lankford values that were determined by tensile tests. It is shown that in the case of hot-rolled Al sheets, if the grain structure is uniform across the thickness of the sheet, the earing profile can be appropriately calculated from the full {200} pole figure obtained from surface X-ray Diffraction (XRD) texture measurements.


Sign in / Sign up

Export Citation Format

Share Document