scholarly journals The Influence of Water/Binder Ratio on the Mechanical Properties of Lime-Based Mortars with White Portland Cement

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 958
Author(s):  
Dejan Vasovic ◽  
Jefto Terzovic ◽  
Ana Kontic ◽  
Ruza Okrajnov-Bajic ◽  
Nenad Sekularac

Protecting the built cultural heritage is one of the most important tasks in architectural practice. The process of repair is time-consuming, weather-dependent, and sensitive to materials applied. Introducing new materials in historic building repair in order to decrease the time needed for repair, brings some risk in the preservation process. The most common material for masonry repair is lime mortar. Adding cement to lime mortar can improve the mechanical properties of mortar and speed up the repair process. The high amount of cement may increase the strength, but decrease ductility and permeability of mortar, causing damages to protected buildings. An increase in strength with the smallest amounts of cement demands optimization of water content in the mixture. Tests were performed to investigate the influence of the water/binder (w/b = water/(lime + cement) ratio on mortar strength and water permeability. An air-entraining agent (AEG) was introduced to improve permeability. Results confirmed that adding small amounts of cement to lime (20% by weight) and decreasing of w/b ratio, improves the strength, with almost negligible influence on water permeability. The addition of very small amounts of AEG did not decrease the strength, nor the permeability.

2019 ◽  
Author(s):  
Deák György ◽  
Ana Maria Panait ◽  
Andreea Mihaela Moncea ◽  
Diana Florina Dumitru ◽  
Madalina Boboc ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2694 ◽  
Author(s):  
Shansuo Zheng ◽  
Lihua Niu ◽  
Pei Pei ◽  
Jinqi Dong

In order to evaluate the deterioration regularity for the mechanical properties of brick masonry due to acid rain corrosion, a series of mechanical property tests for mortars, bricks, shear prisms, and compressive prisms after acid rain corrosion were conducted. The apparent morphology and the compressive strength of the masonry materials (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), the shear behavior of the masonry, and the compression behavior of the masonry were analyzed. The resistance of acid rain corrosion for the cement-lime mortar prisms was the worst, and the incorporation of fly ash into the cement mortar did not improve the acid rain corrosion resistance. The effect of the acid rain corrosion damage on the mechanical properties for the brick was significant. With an increasing number of acid rain corrosion cycles, the compressive strength of the mortar prisms, and the shear and compressive strengths of the brick masonry first increased and then decreased. The peak stress first increased and then decreased whereas the peak strain gradually increased. The slope of the stress-strain curve for the compression prisms gradually decreased. Furthermore, a mathematical degradation model for the compressive strength of the masonry material (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), as well as the shear strength attenuation model and the compressive strength attenuation model of brick masonry after acid rain corrosion were proposed.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Petar Janjatovic ◽  
Olivera Eric Cekic ◽  
Leposava Sidjanin ◽  
Sebastian Balos ◽  
Miroslav Dramicanin ◽  
...  

Austempered ductile iron (ADI) is an advanced cast iron material that has a broad field of application and, among others, it is used in contact and for conveyance of fluids. However, it is noticed that in contact with some fluids, especially water, ADI material becomes brittle. The most significant decrease is established for the elongation. However, the influence of water and the cause of this phenomenon is still not fully understood. For that reason, in this paper, the influence of different water concentrations in ethyl alcohol on the mechanical properties of ADI materials was studied. The test was performed on two different types of ADI materials in 0.2, 4, 10, and 100 vol.% water concentration environments, and in dry condition. It was found that even the smallest concentration of water (0.2 vol.%) causes formation of the embrittled zone at fracture surface. However, not all mechanical properties were affected equally and not all water concentrations have been critical. The highest deterioration was established in the elongation, followed by the ultimate tensile strength, while the proof strength was affected least.


2019 ◽  
Vol 136 ◽  
pp. 02030
Author(s):  
Chen Dong ◽  
Chen Ming ◽  
Cai Ouyang ◽  
Li Pengkun

The GRC formwork structural column adopts the factory-based vertical prefabrication production process, which can reduce the floor space, reduce the formwork loss, speed up the construction progress, promote the full decoration of the prefabricated building, and improve the efficiency of the assembly construction. major. In order to optimize the production process of prefabricated GRC formwork column, the overall stress system of GRC formwork structure is analyzed in the concrete pouring process, and the thickness of GRC formwork, the number of steel hoops and the GRC mode are considered. The influence of the shell cross-section size on the mechanical properties. The research results can provide reference for the optimization and design of prefabricated GRC formwork column production process.


2013 ◽  
Vol 438-439 ◽  
pp. 749-755 ◽  
Author(s):  
Tong Hao ◽  
Dong Li

By the experimental studying on the basic mechanical properties of recycled concrete hollow block masonry, the compressive and shear behavior of recycled aggregate concrete hollow block masonry under different mortar strength were analyzed. Research indicated that the compressive and shear behavior of recycled aggregate concrete hollow block masonry was similar to that of ordinary concrete hollow block masonry. The normal formula was recommended to calculate the compressive strength of the masonry. The shear strength of the masonry was affected by the mortar strength. The shear strength calculation formula of recycled concrete hollow block masonry was proposed according to the formula of masonry design code. The calculating results were in good agreement with the test results.


2021 ◽  
Vol 176 ◽  
pp. 111498 ◽  
Author(s):  
Sebastian Rivera ◽  
Huub Kerckhoffs ◽  
Svetla Sofkova-Bobcheva ◽  
Dan Hutchins ◽  
Andrew East

Sign in / Sign up

Export Citation Format

Share Document