scholarly journals Research on an Improved Three-Level SVPWM Modulation Algorithm Based on ID-NPC Topology

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1129
Author(s):  
Yonglei Cao ◽  
Xiaodong Zhang

The conventional three-level SVPWM (Space Vector Pulse Width Modulation) algorithm is a basic modulation algorithm, which can be performed easily due to clear modulation ideas. Considering different criteria for sectors, however, the basic vector action time is calculated repeatedly, the selection of vector action sequence is cumbersome, and the algorithm execution time is extended as a result of processing by the digital processing chip. In order to better adapt to the PMSM (Permanent Magnet Synchronous Motor) control requirements of the ID-NPC (Improved Diodes Neutral Point Clamped) topology for converter control objects, the sector judgment part, time effect part and vector synthesis part are optimized according to the principles of saving hardware resources and shortening the execution cycle. The vector synthesis optimization algorithm of 2 × amplitude substitution and the vector synthesis algorithm of 1/2 × amplitude substitution are both proposed. Finally, the ID-NPC topology is used to verify the proposed modulation algorithm.

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Peng Wu ◽  
Lei Yuan ◽  
Zhen Zuo ◽  
Junyu Wei

For six-phase permanent-magnet synchronous motor (PMSM) which has two sets of Y-connected three-phase windings spatially phase shifted by 30 electrical degrees, to increase the utilization ratio of the DC bus voltage, a novel space vector pulse width modulation (SVPWM) algorithm in full modulation range capability based on vector weighted method is proposed in this paper. The basic vector action time of SVPWM method is derived in detail, employing vector space decomposition transformation approach. Compared with the previous algorithm, this strategy is able to overcome the inherent shortcomings of the four-vector SVPWM, and it achieves smooth transitions from linear to overmodulation region. Simulation and experimental analyses demonstrate the effectiveness and feasibility of the proposed strategy.


2016 ◽  
Vol 12 (1) ◽  
pp. 1-11
Author(s):  
Adel Obed ◽  
Ali Abdulabbas ◽  
Ahmed Chasib

The Permanent Magnet Synchronous Motor (PMSM) is commonly used as traction motors in the electric traction applications such as in subway train. The subway train is better transport vehicle due to its advantages of security, economic, health and friendly with nature. Braking is defined as removal of the kinetic energy stored in moving parts of machine. The plugging braking is the best braking offered and has the shortest time to stop. The subway train is a heavy machine and has a very high moment of inertia requiring a high braking torque to stop. The plugging braking is an effective method to provide a fast stop to the train. In this paper plugging braking system of the PMSM used in the subway train in normal and fault-tolerant operation is made. The model of the PMSM, three-phase Voltage Source Inverter (VSI) controlled using Space Vector Pulse Width Modulation technique (SVPWM), Field Oriented Control method (FOC) for independent control of two identical PMSMs and fault-tolerant operation is presented. Simulink model of the plugging braking system of PMSM in normal and fault tolerant operation is proposed using Matlab/Simulink software. Simulation results for different cases are given.


2021 ◽  
Vol 54 (2) ◽  
pp. 345-354
Author(s):  
Fayçal Mehedi ◽  
Habib Benbouhenni ◽  
Lazhari Nezli ◽  
Djamel Boudana

In this work, the direct torque control (DTC) is applied to the five-phase permanent magnet synchronous motor (FP-PMSM). The DTC method based on classical space vector pulse width modulation (SVPWM) is a common solution used to overcome traditional problems; such as stator flux ripple, electromagnetic torque ripple and gives more total harmonic distortion (THD) of the stator current. The actual paper is based on improving the performance of DTC-SVPWM by using the feedforward neural networks (FNNs) instead of the proportional-integral (PI) regulators and hysteresis comparators (HCs) of the conventional SVPWM strategy. This algorithm can solve the traditional PI regulators and HCs problems which are represented in responses dynamic and reduce the torque ripple, flux ripple, and the THD of stator current of FP-PMSM drives. The proposed strategy was tested in different tests with simulation using Matlab software.


Author(s):  
D. Sandhya Rani ◽  
A. Appaprao

Multilevel inverters are increasingly being used in high-power medium voltage applications due to their superior performance compared to two-level inverters. Among various modulation techniques for a multilevel inverter, the space vector pulse width modulation (SVPWM) is widely used. The complexity is due to the difficulty in determining the location of the reference vector, the calculation of ontimes, and the determination and selection of switching states. This paper proposes a general SVPWM algorithm for multilevel inverters based on standard two-level SVPWM. Since the proposed multilevel SVPWM method uses two-level modulation to calculate the on-times, the computation of on-times for an n-level inverter becomes easier. The proposed method uses a simple mapping to achieve the SVPWM for a multilevel inverter. A general n-level implementation is explained, and experimental results are given for two-level and three-level inverters.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 777
Author(s):  
Zhihong Wu ◽  
Weisong Gu ◽  
Yuan Zhu ◽  
Ke Lu ◽  
Li Chen ◽  
...  

This paper gives the current regulator design for a dual Y shift 30 degrees permanent magnet synchronous motor (DT_PMSM) based on the vector space decomposition (VSD). Current regulator design in α-β subspace is insufficient and designing additional controllers in x-y subspace is necessary to eliminate the harmonic currents due to the nonlinear characteristics of the inverter. A sliding mode controller based on an internal model is proposed in α-β subspace, which is robust to the parameter uncertainties and disturbances in current control loops. In order to eliminate the harmonic currents in x-y subspace, a resonant controller is employed based on a new synchronous rotating matrix. Three-phase decomposition space vector pulse width modulation (SVPWM) technique is illustrated for the purpose of synthesizing the voltage vectors in both subspaces simultaneously. The feasibility and efficiency of the suggested current regulator design are validated by a set of experimental results.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 234 ◽  
Author(s):  
Ahmet Aksoz ◽  
Yipeng Song ◽  
Ali Saygin ◽  
Frede Blaabjerg ◽  
Pooya Davari

In this paper, a virtual positive impedance (VPI) based active damping control for a slim DC-link motor drive with 24 section space vector pulse width modulation (SVPWM) is proposed. Utilizing the proposed control and modulation strategy can improve the input of current total harmonic distortion (THD) while maintaining the cogging torque of the motor. The proposed system is expected to reduce the front-end current THD according to international standards, as per IEC 61000 and IEEE-519. It is also expected to achieve lower cost, longer lifetime, and fewer losses. A permanent magnet synchronous motor (PMSM) is fed by the inverter, which adopts the 24 section SVPWM technique. The VPI based active damping control for the slim DC-link drive with/without the 24 section SVPWM are compared to confirm the performance of the proposed method. The simulation results based on MATLAB are provided to validate the proposed control strategy.


2014 ◽  
Vol 945-949 ◽  
pp. 3475-3478
Author(s):  
Bao Jun Liu ◽  
Jing Cheng Shi ◽  
Li Ping Guo ◽  
Yin Peng Li

Adopts the method of adding demulsifiers into the oily wastewater to increase the droplets size to further improve the efficiency of oil-water separation, and puts forward the corresponding optimized indicators and methods of demulsifiers. The optimized selection of the demulsifiers and its additive dosage was carried out by indoor experiments based on the optimized indicators. Using artificial produced water to test the treatment effect of the optimized demulsifier at different action time. The experiments show that demulsifier S1 with additive dosage of 20mg/l can accordance with the requirements of the processing very well, and as the increase of action time, the average size of droplets increase and the amount of the droplets which under 1μm decrease.


Sign in / Sign up

Export Citation Format

Share Document