scholarly journals Estimation of Displacement for Internet of Things Applications with Kalman Filter

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 985 ◽  
Author(s):  
Renato Ferrero ◽  
Filippo Gandino ◽  
Masoud Hemmatpour

In the vision of the Internet of Things, an object embedded in the physical world is recognizable and becomes smart by communicating data about itself and by accessing aggregate information from other devices. One of the most useful types of information for interactions among objects regards their movement. Mobile devices can infer their position by exploiting an embedded accelerometer. However, the double integration of the acceleration may not guarantee a reliable estimation of the displacement of the device (i.e., the difference in the new location). In fact, noise and measurement errors dramatically affect the assessment. This paper investigates the benefits and drawbacks of the use of the Kalman filter as a correction technique to achieve more precise estimation of displacement. The approach is evaluated with two accelerometers embedded in commercial devices: A smartphone and a sensor platform. The results show that the technique based on the Kalman filter dramatically reduces the percentage error, in comparison to the assessment made by double integration of the acceleration data; in particular, the precision is improved by up to 72%. At the same time, the computational overhead due to the Kalman filter can be assumed to be negligible in almost all application scenarios.

2021 ◽  
Vol 83 (4) ◽  
pp. 100-111
Author(s):  
Ahmad Anwar Zainuddin ◽  

Internet of Things (IoT) is an up-and-coming technology that has a wide variety of applications. It empowers physical objects to be organized in a specialized framework to grow its convenience in terms of ease and time utilization. It is to convert the thought of bridging the crevice between the physical world and the machine world. It is also being use in the wide range of the technology in this current situation. One of its applications is to monitor and store data over time from numerous devices allows for easy analysis of the dataset. This analysis can then be the basis of decisions made on the same. In this study, the concept, architecture, and relationship of IoT and Big Data are described. Next, several use cases in IoT and big data in the research methodology are studied. The opportunities and open challenges which including the future directions are described. Furthermore, by proposing a new architecture for big data analytics in the Internet of Things, this paper adds value. Overall, the various types of big IoT data analytics, their methods, and associated big data mining technologies are discussed.


Author(s):  
Laura DeNardis

This chapter examines four emerging areas of technological innovation in which digital technologies are becoming embedded into the physical world. The digitization of everyday objects includes consumer Internet of things and connected objects in smart cities. The Internet of self encompasses cyberphysical systems entangled with the body, such as wearable technologies, implantable chips, biometric identification devices, and digital medical monitoring and delivery systems. The industrial Internet of things, sometimes called the “fourth industrial revolution,” involves restructurings of industries and labor around cyber-physical systems. Finally, emergent embedded systems include those embedded objects that are born digital, such as robotics, 3D printing, and arguably augmented reality systems. Understanding these heterogeneous technical architectures, and the technological affordances and characteristics they all share, is necessary for understanding emerging governance debates.


Author(s):  
S. Arokiaraj ◽  
Dr. N. Viswanathan

With the advent of Internet of things(IoT),HA (HA) recognition has contributed the more application in health care in terms of diagnosis and Clinical process. These devices must be aware of human movements to provide better aid in the clinical applications as well as user’s daily activity.Also , In addition to machine and deep learning algorithms, HA recognition systems has significantly improved in terms of high accurate recognition. However, the most of the existing models designed needs improvisation in terms of accuracy and computational overhead. In this research paper, we proposed a BAT optimized Long Short term Memory (BAT-LSTM) for an effective recognition of human activities using real time IoT systems. The data are collected by implanting the Internet of things) devices invasively. Then, proposed BAT-LSTM is deployed to extract the temporal features which are then used for classification to HA. Nearly 10,0000 dataset were collected and used for evaluating the proposed model. For the validation of proposed framework, accuracy, precision, recall, specificity and F1-score parameters are chosen and comparison is done with the other state-of-art deep learning models. The finding shows the proposed model outperforms the other learning models and finds its suitability for the HA recognition.


2020 ◽  
Vol 3 (1) ◽  
pp. 155
Author(s):  
Andree Sugiyanto ◽  
Onnyxiforus Gondokusumo

In the world of construction, control is needed at the implementation stage, which is prediction or forecasting duration project schedule. Estimated project schedule is an important part for project management making decisions that affect the future of the project. Forecasting method commonly used by practitioners in this case the construction project contractor in evaluating prediction of duration is deterministic forecasting method Earned Value Method (EVM), Earned Schedule Method (ESM). Kalman Filter Earned Value Method (KEVM) as probabilistic forecasting method is carried out to produce more accurate predictive value. The purpose of this study to compare the accuracy of three methods. This research was conducted by calculating duration of the project from EVM, ESM, and KEVM on maintenance and reconstruction projects of Jakarta-Cikampek and Jakarta-Tangerang toll roads. The data used from the project control data S-curve. The control data is processed with EVM, ESM, KEVM to determine the comparison between three methods of predicting duration. Prediction results of three methods were tested with Mean Absolute Percentage Error (MAPE). The results of this study indicate that KEVM can reduce errors after Kalman Filter is performed on estimated duration using EVM. ESM duration prediction yields the smallest MAPE value of the three methods. AbstrakDalam dunia pembangunan konstruksi dibutuhkan pengendalian pada tahap pelaksanaan yaitu prediksi atau peramalan durasi jadwal proyek. Perkiraan jadwal proyek adalah bagian penting untuk manajemen proyek membuat keputusan yang mempengaruhi masa depan proyek. Metode peramalan yang umum digunakan para praktisi dalam hal ini kontraktor proyek konstruksi dalam mengevaluasi prediksi durasi adalah metode peramalan deterministik Earned Value Method (EVM), Earned Schedule Method (ESM). Kalman Filter Earned Value Method (KEVM) sebagai metode peramalan probabilistik dilakukan untuk menghasilkan nilai prediksi yang lebih akurat. Tujuan penelitian ini membandingkan akurasi dari ketiga metode. Penelitian ini dilakukan dengan menghitung durasi proyek dari EVM, ESM, dan KEVM pada proyek pemeliharaan dan rekonstruksi jalan tol Jakarta – Cikampek dan Jakarta – Tangerang. Data yang digunakan dari proyek tersebut adalah data-data pengendalian berupa kurva S. Data pengendalian tersebut diolah dengan EVM, ESM, KEVM untuk mengetahui perbandingan antara ketiga metode prediksi durasi tersebut. Hasil prediksi dari ketiga metode diuji dengan Mean Absolute Percentage Error (MAPE). Hasil dari penelitian ini menunjukkan bahwa KEVM dapat mengurangi kesalahan setelah dilakukan Kalman Filter pada perkiraan durasi menggunakan Earned Value Method. Prediksi durasi ESM menghasilkan nilai MAPE yang paling kecil dari ketiga metode.


2012 ◽  
Vol 116 (1178) ◽  
pp. 373-389
Author(s):  
Y. Jiao ◽  
J. Wang ◽  
X. Pan ◽  
H. Zhou

Abstract The satellite attitude determination approach based on the Extended Kalman Filter (EKF) has been widely used in many real applications. However, the accuracy of this method largely depends on the fitness of measurement model. We aim to analyse the influence of measurement errors to the accuracy of EKF based attitude determination approach in this paper. The measurement errors, which are divided into structural error and nonstructural error by their influences, are analysed in principle. In the setting of the combination of star sensors and gyros, according to the property of innovation, we employ the technique of correlation test to analyse the influences of different kinds of measurement errors. Experimental results demonstrate the effectiveness of our previous analysis.


Author(s):  
Ping Zhang ◽  
Bei Li ◽  
Guanglong Du

Purpose – This paper aims to develop a wearable-based human-manipulator interface which integrates the interval Kalman filter (IKF), unscented Kalman filter (UKF), over damping method (ODM) and adaptive multispace transformation (AMT) to perform immersive human-manipulator interaction by interacting the natural and continuous motion of the human operator’s hand with the robot manipulator. Design/methodology/approach – The interface requires that a wearable watch is tightly worn on the operator’s hand to track the continuous movements of the operator’s hand. Nevertheless, the measurement errors generated by the sensor error and tracking failure signicantly occur several times, which means that the measurement is not determined with sufficient accuracy. Due to this fact, IKF and UKF are used to compensate for the noisy and incomplete measurements, and ODM is established to eliminate the influence of the error signals like data jitter. Furthermore, to be subject to the inherent perceptive limitations of the human operator and the motor, AMT that focuses on a secondary treatment is also introduced. Findings – Experimental studies on the GOOGOL GRB3016 robot show that such a wearable-based interface that incorporates the feedback mechanism and hybrid filters can operate the robot manipulator more flexibly and advantageously even if the operator is nonprofessional; the feedback mechanism introduced here can successfully assist in improving the performance of the interface. Originality/value – The interface uses one wearable watch to simultaneously track the orientation and position of the operator’s hand; it is not only avoids problems of occlusion, identification and limited operating space, but also realizes a kind of two-way human-manipulator interaction, a feedback mechanism can be triggered in the watch to reflect the system states in real time. Furthermore, the interface gets rid of the synchronization question in posture estimation, as hybrid filters work independently to compensate the noisy measurements respectively.


2022 ◽  
Vol 25 (3) ◽  
pp. 28-33
Author(s):  
Francesco Restuccia ◽  
Tommaso Melodia

Wireless systems such as the Internet of Things (IoT) are changing the way we interact with the cyber and the physical world. As IoT systems become more and more pervasive, it is imperative to design wireless protocols that can effectively and efficiently support IoT devices and operations. On the other hand, today's IoT wireless systems are based on inflexible designs, which makes them inefficient and prone to a variety of wireless attacks. In this paper, we introduce the new notion of a deep learning-based polymorphic IoT receiver, able to reconfigure its waveform demodulation strategy itself in real time, based on the inferred waveform parameters. Our key innovation is the introduction of a novel embedded deep learning architecture that enables the solution of waveform inference problems, which is then integrated into a generalized hardware/software architecture with radio components and signal processing. Our polymorphic wireless receiver is prototyped on a custom-made software-defined radio platform. We show through extensive over-the-air experiments that the system achieves throughput within 87% of a perfect-knowledge Oracle system, thus demonstrating for the first time that polymorphic receivers are feasible.


Author(s):  
Mikael Wiberg

Computing is increasingly intertwined with our physical world. From smart watches to connected cars, to the Internet of Things and 3D-printing, the trend towards combining digital and analogue materials in design is no longer an exception, but a hallmark for where interaction design is going in general. Computational processing increasingly involves physical materials, computing is increasingly manifested and expressed in physical form, and interaction with these new forms of computing is increasingly mediated via physical materials. Interaction Design is therefore increasingly a material concern. – Welcome to a book on the materiality of interaction, welcome to a book on material-centered interaction design! In this introduction to this book, “The Materiality of Interaction – Notes on the Materials of Interaction Design”, I describe the contemporary trend in interaction design towards material interactions, I describe how interaction design is increasingly about materials, and I propose “Material-centered interaction design” as a method for working with materials in interaction design projects.


Author(s):  
Sushruta Mishra ◽  
Hrudaya Kumar Tripathy ◽  
Brojo Kishore Mishra ◽  
Sunil Kumar Mohapatra

The phrase Internet of Things (IoT) heralds a vision of the future Internet where connecting physical things, from banknotes to bicycles, through a network will let them take an active part in the Internet, exchanging information about themselves and their surroundings. This will give immediate access to information about the physical world and the objects in it leading to innovative services and increase in efficiency and productivity. In general, it may be beneficial to incorporate a number of the technologies of IoT with the use of services that can act as the bridge between each technology and the applications that developers wish to implement in IoT. This chapter studies the state-of-the-art of IoT and presents the key potential applications, challenges and future research areas in the domain of IoT. This chapter presents four main categories of services according to technical features. Some major issues of future research in IoT are identified and discussed briefly.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fatna El Mahdi ◽  
Ahmed Habbani ◽  
Zaid Kartit ◽  
Bachir Bouamoud

Internet of Things (IoT) is a hot and emerging topic nowadays. In the world of today, all kinds of devices are supposed to be connected and all types of information are exchanged. This makes human daily life easier and much more intelligent than before. However, this life mode is vulnerable to several security threats. In fact, the mobile networks, by nature, are more exposed to malicious attacks that may read confidential information and modify or even drop important data. This risk should be taken in consideration prior to any construction of mobile networks especially in the coming 5G technology. The present paper aims to provide a contribution in securing such kinds of environment by proposing a new protocol that can be implemented in ad hoc networks.


Sign in / Sign up

Export Citation Format

Share Document