scholarly journals A Robust Structured Tracker Using Local Deep Features

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 846 ◽  
Author(s):  
Mohammadreza Javanmardi ◽  
Amir Hossein Farzaneh ◽  
Xiaojun Qi

Deep features extracted from convolutional neural networks have been recently utilized in visual tracking to obtain a generic and semantic representation of target candidates. In this paper, we propose a robust structured tracker using local deep features (STLDF). This tracker exploits the deep features of local patches inside target candidates and sparsely represents them by a set of templates in the particle filter framework. The proposed STLDF utilizes a new optimization model, which employs a group-sparsity regularization term to adopt local and spatial information of the target candidates and attain the spatial layout structure among them. To solve the optimization model, we propose an efficient and fast numerical algorithm that consists of two subproblems with the close-form solutions. Different evaluations in terms of success and precision on the benchmarks of challenging image sequences (e.g., OTB50 and OTB100) demonstrate the superior performance of the STLDF against several state-of-the-art trackers.

2020 ◽  
Vol 10 (16) ◽  
pp. 5583 ◽  
Author(s):  
Jun Li ◽  
Yuanxi Peng ◽  
Tian Jiang ◽  
Longlong Zhang ◽  
Jian Long

A hyperspectral image (HSI) contains many narrow spectral channels, thus containing efficient information in the spectral domain. However, high spectral resolution usually leads to lower spatial resolution as a result of the limitations of sensors. Hyperspectral super-resolution aims to fuse a low spatial resolution HSI with a conventional high spatial resolution image, producing an HSI with high resolution in both the spectral and spatial dimensions. In this paper, we propose a spatial group sparsity regularization unmixing-based method for hyperspectral super-resolution. The hyperspectral image (HSI) is pre-clustered using an improved Simple Linear Iterative Clustering (SLIC) superpixel algorithm to make full use of the spatial information. A robust sparse hyperspectral unmixing method is then used to unmix the input images. Then, the endmembers extracted from the HSI and the abundances extracted from the conventional image are fused. This ensures that the method makes full use of the spatial structure and the spectra of the images. The proposed method is compared with several related methods on public HSI data sets. The results demonstrate that the proposed method has superior performance when compared to the existing state-of-the-art.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 400 ◽  
Author(s):  
Zelin Nie ◽  
Feng Gao ◽  
Chao-Bo Yan

Reducing the energy consumption of the heating, ventilation, and air conditioning (HVAC) systems while ensuring users’ comfort is of both academic and practical significance. However, the-state-of-the-art of the optimization model of the HVAC system is that either the thermal dynamic model is simplified as a linear model, or the optimization model of the HVAC system is single-timescale, which leads to heavy computation burden. To balance the practicality and the overhead of computation, in this paper, a multi-timescale bilinear model of HVAC systems is proposed. To guarantee the consistency of models in different timescales, the fast timescale model is built first with a bilinear form, and then the slow timescale model is induced from the fast one, specifically, with a bilinear-like form. After a simplified replacement made for the bilinear-like part, this problem can be solved by a convexification method. Extensive numerical experiments have been conducted to validate the effectiveness of this model.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4171
Author(s):  
Rabia Ikram ◽  
Badrul Mohamed Jan ◽  
Akhmal Sidek ◽  
George Kenanakis

An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties, several additives are used in drilling fluids that provide satisfactory rheological and filtration properties. However, commonly used additives are environmentally hazardous; when drilling fluids are disposed after drilling operations, they are discarded with the drill cuttings and additives into water sources and causes unwanted pollution. Therefore, these additives should be substituted with additives that are environmental friendly and provide superior performance. In this regard, biodegradable additives are required for future research. This review investigates the role of various bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient rheological and filtration examinations were carried out on water-based drilling fluids to evaluate the effect of wastes as additives on the performance of drilling fluids.


2021 ◽  
Vol 13 (13) ◽  
pp. 2473
Author(s):  
Qinglie Yuan ◽  
Helmi Zulhaidi Mohd Shafri ◽  
Aidi Hizami Alias ◽  
Shaiful Jahari Hashim

Automatic building extraction has been applied in many domains. It is also a challenging problem because of the complex scenes and multiscale. Deep learning algorithms, especially fully convolutional neural networks (FCNs), have shown robust feature extraction ability than traditional remote sensing data processing methods. However, hierarchical features from encoders with a fixed receptive field perform weak ability to obtain global semantic information. Local features in multiscale subregions cannot construct contextual interdependence and correlation, especially for large-scale building areas, which probably causes fragmentary extraction results due to intra-class feature variability. In addition, low-level features have accurate and fine-grained spatial information for tiny building structures but lack refinement and selection, and the semantic gap of across-level features is not conducive to feature fusion. To address the above problems, this paper proposes an FCN framework based on the residual network and provides the training pattern for multi-modal data combining the advantage of high-resolution aerial images and LiDAR data for building extraction. Two novel modules have been proposed for the optimization and integration of multiscale and across-level features. In particular, a multiscale context optimization module is designed to adaptively generate the feature representations for different subregions and effectively aggregate global context. A semantic guided spatial attention mechanism is introduced to refine shallow features and alleviate the semantic gap. Finally, hierarchical features are fused via the feature pyramid network. Compared with other state-of-the-art methods, experimental results demonstrate superior performance with 93.19 IoU, 97.56 OA on WHU datasets and 94.72 IoU, 97.84 OA on the Boston dataset, which shows that the proposed network can improve accuracy and achieve better performance for building extraction.


2020 ◽  
Vol 34 (04) ◽  
pp. 3641-3648 ◽  
Author(s):  
Eli Chien ◽  
Antonia Tulino ◽  
Jaime Llorca

The geometric block model is a recently proposed generative model for random graphs that is able to capture the inherent geometric properties of many community detection problems, providing more accurate characterizations of practical community structures compared with the popular stochastic block model. Galhotra et al. recently proposed a motif-counting algorithm for unsupervised community detection in the geometric block model that is proved to be near-optimal. They also characterized the regimes of the model parameters for which the proposed algorithm can achieve exact recovery. In this work, we initiate the study of active learning in the geometric block model. That is, we are interested in the problem of exactly recovering the community structure of random graphs following the geometric block model under arbitrary model parameters, by possibly querying the labels of a limited number of chosen nodes. We propose two active learning algorithms that combine the use of motif-counting with two different label query policies. Our main contribution is to show that sampling the labels of a vanishingly small fraction of nodes (sub-linear in the total number of nodes) is sufficient to achieve exact recovery in the regimes under which the state-of-the-art unsupervised method fails. We validate the superior performance of our algorithms via numerical simulations on both real and synthetic datasets.


Author(s):  
Lianli Gao ◽  
Zhilong Zhou ◽  
Heng Tao Shen ◽  
Jingkuan Song

Image edge detection is considered as a cornerstone task in computer vision. Due to the nature of hierarchical representations learned in CNN, it is intuitive to design side networks utilizing the richer convolutional features to improve the edge detection. However, there is no consensus way to integrate the hierarchical information. In this paper, we propose an effective and end-to-end framework, named Bidirectional Additive Net (BAN), for image edge detection. In the proposed framework, we focus on two main problems: 1) how to design a universal network for incorporating hierarchical information sufficiently; and 2) how to achieve effective information flow between different stages and gradually improve the edge map stage by stage. To tackle these problems, we design a consecutive bottom-up and top-down architecture, where a bottom-up branch can gradually remove detailed or sharp boundaries to enable accurate edge detection and a top-down branch offers a chance of error-correcting by revisiting the low-level features that contain rich textual and spatial information. And attended additive module (AAM) is designed to cumulatively refine edges by selecting pivotal features in each stage. Experimental results show that our proposed methods can improve the edge detection performance to new records and achieve state-of-the-art results on two public benchmarks: BSDS500 and NYUDv2.


Author(s):  
Qi Xin ◽  
Shaohao Hu ◽  
Shuaiqi Liu ◽  
Ling Zhao ◽  
Shuihua Wang

As one of the important tools of epilepsy diagnosis, the electroencephalogram (EEG) is noninvasive and presents no traumatic injury to patients. It contains a lot of physiological and pathological information that is easy to obtain. The automatic classification of epileptic EEG is important in the diagnosis and therapeutic efficacy of epileptics. In this article, an explainable graph feature convolutional neural network named WTRPNet is proposed for epileptic EEG classification. Since WTRPNet is constructed by a recurrence plot in the wavelet domain, it can fully obtain the graph feature of the EEG signal, which is established by an explainable graph features extracted layer called WTRP block . The proposed method shows superior performance over state-of-the-art methods. Experimental results show that our algorithm has achieved an accuracy of 99.67% in classification of focal and nonfocal epileptic EEG, which proves the effectiveness of the classification and detection of epileptic EEG.


2020 ◽  
Vol 10 (19) ◽  
pp. 6945
Author(s):  
Kin-Choong Yow ◽  
Insu Kim

Object localization is an important task in the visual surveillance of scenes, and it has important applications in locating personnel and/or equipment in large open spaces such as a farm or a mine. Traditionally, object localization can be performed using the technique of stereo vision: using two fixed cameras for a moving object, or using a single moving camera for a stationary object. This research addresses the problem of determining the location of a moving object using only a single moving camera, and it does not make use of any prior information on the type of object nor the size of the object. Our technique makes use of a single camera mounted on a quadrotor drone, which flies in a specific pattern relative to the object in order to remove the depth ambiguity associated with their relative motion. In our previous work, we showed that with three images, we can recover the location of an object moving parallel to the direction of motion of the camera. In this research, we find that with four images, we can recover the location of an object moving linearly in an arbitrary direction. We evaluated our algorithm on over 70 image sequences of objects moving in various directions, and the results showed a much smaller depth error rate (less than 8.0% typically) than other state-of-the-art algorithms.


2020 ◽  
Vol 34 (6) ◽  
pp. 1963-1983
Author(s):  
Maryam Habibi ◽  
Johannes Starlinger ◽  
Ulf Leser

Abstract Tables are a common way to present information in an intuitive and concise manner. They are used extensively in media such as scientific articles or web pages. Automatically analyzing the content of tables bears special challenges. One of the most basic tasks is determination of the orientation of a table: In column tables, columns represent one entity with the different attribute values present in the different rows; row tables are vice versa, and matrix tables give information on pairs of entities. In this paper, we address the problem of classifying a given table into one of the three layouts horizontal (for row tables), vertical (for column tables), and matrix. We describe DeepTable, a novel method based on deep neural networks designed for learning from sets. Contrary to previous state-of-the-art methods, this basis makes DeepTable invariant to the permutation of rows or columns, which is a highly desirable property as in most tables the order of rows and columns does not carry specific information. We evaluate our method using a silver standard corpus of 5500 tables extracted from biomedical articles where the layout was determined heuristically. DeepTable outperforms previous methods in both precision and recall on our corpus. In a second evaluation, we manually labeled a corpus of 300 tables and were able to confirm DeepTable to reach superior performance in the table layout classification task. The codes and resources introduced here are available at https://github.com/Marhabibi/DeepTable.


Sign in / Sign up

Export Citation Format

Share Document