scholarly journals Pore Structure Characterization and the Controlling Factors of the Bakken Formation

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2879 ◽  
Author(s):  
Yuming Liu ◽  
Bo Shen ◽  
Zhiqiang Yang ◽  
Peiqiang Zhao

The Bakken Formation is a typical tight oil reservoir and oil production formation in the world. Pore structure is one of the key factors that determine the accumulation and production of the hydrocarbon. In order to study the pore structures and main controlling factors of the Bakken Formation, 12 samples were selected from the Bakken Formation and conducted on a set of experiments including X-ray diffraction mineral analysis (XRD), total organic carbon (TOC), vitrinite reflectance (Ro), and low-temperature nitrogen adsorption experiments. Results showed that the average TOC and Ro of Upper and Lower Bakken shale is 10.72 wt% and 0.86%, respectively. The Bakken Formation develops micropores, mesopores, and macropores. However, the Upper and Lower Bakken shale are dominated by micropores, while the Middle Bakken tight reservoir is dominated by mesopores. The total pore volume and specific surface area of the Middle Bakken are significantly higher than those of the Upper and Lower Bakken, indicating that Middle Bakken is more conducive to the storage of oil and gas. Through analysis, the main controlling factors for the pore structure of the Upper and Lower Bakken shale are TOC and maturity, while those for Middle Bakken are clay and quartz contents.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2013 ◽  
Vol 734-737 ◽  
pp. 1175-1178
Author(s):  
Hong Qi Yuan ◽  
Ying Hua Yu ◽  
Fang Liu

Based on the analysis of the relationships between the conditions of structures, sedimentations, source rocks, cap rocks, faults, oil and gas migration passages and traps and hydrocarbon accumulation, the controlling factors of hydrocarbon accumulation and distribution was studied in Talaha-changjiaweizi area. It is held that the source rocks control the hydrocarbon vertical distribution, the drainage capabilities control the hydrocarbon plane distribution, fracture belts control the hydrocarbon accumulation of Talaha syncline, underwater distributary channel is a favorable accumulation environment and reservoir physical properties control the oil and water distributions. Therefore, it is concluded that source rocks, fracture belts, sedimentary microfacies and reservoir physical properties are the main controlling factors of hydrocarbon accumulation and distribution in Talaha-changjiaweizi area.


Fuel ◽  
2017 ◽  
Vol 209 ◽  
pp. 567-578 ◽  
Author(s):  
Kouqi Liu ◽  
Mehdi Ostadhassan ◽  
Jie Zhou ◽  
Thomas Gentzis ◽  
Reza Rezaee

2013 ◽  
Vol 341-342 ◽  
pp. 345-350 ◽  
Author(s):  
Wei Min Cheng ◽  
Xiao Qiang Zhang ◽  
Rui Zhang ◽  
Gang Wang

In view of pore distribution in coal, this paper applies BJH method that is based on the cylinder theory and adopts cryogenic liquid nitrogen adsorption method to carry out experimental investigation on pore structure of No.3U coal seam in Sanhekou Coalmine, obtaining the fact that pore structure of No.3U coal is complicated, the cool pores are mostly flask pores, others are the parallel plate pores with one end closed and the cylinder pores with one end closed; According to the distribution of BJH pore volume and pore surface area, ultramicropores with apertures less than 10 nm are among the most; Then obtain the average BET specific surface area, the distribution of BJH pore volume and pore area, average single-point total pore volume and most probable pore .etc, which conducive to a better understanding of the micropores characteristic of coal.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 527
Author(s):  
Liangwei Xu ◽  
Keji Yang ◽  
Hao Wei ◽  
Luofu Liu ◽  
Xiao Li ◽  
...  

Nanoscale pore structure characteristics and their main controlling factors are key elements affecting the gas storage capacity, permeability, and the accumulation mechanism of shale. A multidisciplinary analytical program was applied to quantify the pore structure of all sizes of Xiamaling shale from Zhangjiakou, Hebei. The result implies that Mercury injection porosimetry (MIP) and low-pressure N2 curves of the samples can be divided into three and four types, respectively, reflecting different connectivity performances. The maximum CO2 adsorbing capacity increases with increasing total organic carbon (TOC) content, pore volume (PV), and surface area (SA) of the micropores are distributed in a three-peak type. The full-scale pore structure distribution characteristics reveal the coexistence of multiple peaks with multiple dominant scales and bi-peak forms with mesopores and micropores. The porosity positively correlates with the TOC and quartz content, but negatively correlates with clay mineral content. Organic matter (OM) is the main contributor to micropore and mesopore development. Smectite and illite/smectite (I/S) assist the development of the PV and SA of pores with different size. Illite promotes the development of the nanoscale PV, but is detrimental to the development of the SA. Thermal maturity controls the evolution of pores with different size, and the evolution model for the TOC-normalized PVs of different diameter scales is established. Residual hydrocarbon is mainly accumulated in micropores sized 0.3 to 1.0 nm and mesopores sized 40 nm, 2 nm and less than 10 nm. Since the samples were extracted, the pore space occupied by residual hydrocarbon was released, resulting in a remarkable increase in PV and SA.


2014 ◽  
Vol 915-916 ◽  
pp. 1103-1107
Author(s):  
Shu Ling Tang ◽  
Da Zhen Tang ◽  
Hao Xu ◽  
Shu Tao ◽  
Yuan Fang ◽  
...  

Based on previous measured data and adsorption isotherms experiment of six coal samples from different stratification of the southern Qinshui basin, discussed the diversity between different stratification on adsorption characteristics and its main controlling factors. The results show that: In the macro level, bright coal layer has the highest adsorption capacity, Langmuir volume (VL) is up to 40m3/t ; the adsorption capacity of dull coal and semi-dull coal is relatively low. By analyzing the relationship between the Langmuir volume of coal petrography and various factors, discovering the Langmuir volume has a positive correlation with vitrinite content, vitrinite reflectance, fixed carbon content, and micro-pores content, but negative correlation with ash, while it has no significant linear relationship between moisture, porosity, permeability. By grey relational analysis, it shows that the impact is in descending order from vitrinite content to fixed carbon content, vitrinite reflectance, micro-pores content, ash content.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2880
Author(s):  
Bryan X. Medina-Rodriguez ◽  
Vladimir Alvarado

The analysis of porosity and pore structure of shale rocks has received special attention in the last decades as unconventional reservoir hydrocarbons have become a larger parcel of the oil and gas market. A variety of techniques are available to provide a satisfactory description of these porous media. Some techniques are based on saturating the porous rock with a fluid to probe the pore structure. In this sense, gases have played an important role in porosity and pore structure characterization, particularly for the analysis of pore size and shapes and storage or intake capacity. In this review, we discuss the use of various gases, with emphasis on N2 and CO2, for characterization of shale pore architecture. We describe the state of the art on the related inversion methods for processing the corresponding isotherms and the procedure to obtain surface area and pore-size distribution. The state of the art is based on the collation of publications in the last 10 years. Limitations of the gas adsorption technique and the associated inversion methods as well as the most suitable scenario for its application are presented in this review. Finally, we discuss the future of gas adsorption for shale characterization, which we believe will rely on hybridization with other techniques to overcome some of the limitations.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yan Zhang ◽  
Zhiping Li ◽  
Fengpeng Lai ◽  
Hao Wu ◽  
Gangtao Mao ◽  
...  

One of the main techniques for the exploitation of shale oil and gas is hydraulic fracturing, and the fracturing fluid (slick water) may interact with minerals during the fracturing process, which has a significant effect on the shale pore structure. In this study, the pore structure and fluid distribution of shale samples were analyzed by utilizing low-pressure liquid nitrogen adsorption (LP-N2GA) and nuclear magnetic resonance (NMR). The fractal analysis showed that the pore structure of the sample was strongly heterogeneous. It was also found that the effect of slick water on pore structure can be attributed to two phenomena: the swelling of clay minerals and the dissolution of carbonate minerals. The swelling and dissolution of minerals can exist at the same time, and the strength of them at different soaking times is different, leading to the changes in specific surface area and pore size. After the samples were soaked in the slick water for two days, the contact angle reached the minimum value (below 8°), which means the sample is strongly hydrophilic; then the contact angle increased to above 38° with longer soaking times. The connected pore space in the shale matrix is enlarged by the soaking processing. Therefore, an in-depth understanding of the interaction between the fracking fluid and shale is essential to deepen our understanding of changes in the pore structure in the reservoir and the long-term productivity of shale gas.


Sign in / Sign up

Export Citation Format

Share Document