scholarly journals The Latest Method for Surface Tension Determination: Experimental Validation

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3629
Author(s):  
Tomasz Janusz Teleszewski ◽  
Andrzej Gajewski

The highest effectiveness of heat exchange is under boiling; hence, surface tension is an important parameter and should be determined when new liquid substances are created. The most popular methods are based on numerically solving the Young–Laplace equation by applying the Bashforth and Adams algorithm, which fails at the poles and at the inflection points. The newest algorithm is based on the closed-form expressions that define a drop or bubble. It gives the accurate solutions for the fully created drops or bubbles. To validate it, the surface tension value is determined for the air bubbles in water and compared with the reference data. Because the relative discrepancies are extremely small, the new method may be thought of as positively validated.

Robotica ◽  
1999 ◽  
Vol 17 (5) ◽  
pp. 475-485 ◽  
Author(s):  
Zhen Huang ◽  
Y. Lawrence Yao

This paper presents a new method to analyze the closed-form kinematics of a generalized three-degree-of-a-freedom spherical parallel manipulator. Using this analytical method, concise and uniform solutions are achieved. Two special forms of the three-degree-of-freedom spherical parallel manipulator, i.e. right-angle type and a decoupled type, are also studied and their unique and interesting properties are investigated, followed by a numerical example.


Author(s):  
B. Whitney Rappole ◽  
Neil C. Singer ◽  
Warren P. Seering

Abstract A closed-form method of calculating Input Shaping sequences for two modes of vibration is presented. The new method eliminates the optimization routines previously required to find the same solutions. Input Shaping is a feed forward method of reducing residual vibrations in flexible structures by convolving an Input Shaping sequence with a command profile. The two-mode sequences are installed on a four-axis robot used in the manufacture of silicon wafers — the Cassette Management System. The new sequences are found to significantly improve the performance of the system. In standard throughput tests, speed increases of 15%–25% were obtained on each axis while vibrations were simultaneously reduced by 20%–90%.


Author(s):  
Satoshi Kitayama ◽  
Hiroshi Yamakawa

This paper presents a new method to determine an optimum topology of plate structure using coordinate transformation by conformal mapping. We have already proposed a method to determine an optimum topology of planar structure using coordinate transformation by conformal mapping. In that study first we defined simple design domain in which analysis and optimization were performed easily. We calculated optimum topology in this simple design domain. Then we applied coordinate transformation by conformal mapping to optimum topology calculated in simple design domain, and obtained some optimum topologies in complex design domain. We also showed that the invariants of stresses which were the sum and difference of principal stress satisfied Laplace equation and relationshi p between fluid mechanics and electromagnetic could be valid in the theory of elasticity. In this study we clarify two invariants of bending moments satisfy Laplace equation under a certain condition. We note the similarity between Airy stress function of 2-D elastic body and deflection of plate, and will show that the two invariants of bending moments which are the sum and difference of principal bending moments satisfy Laplace equation using this similarity. As a result we will show that corresponding relationship between fluid mechanics, electromagnetic and elasticity may be valid in the theory of plate. Then by using this relationship, we proposed a new method to determine optimum topology using coordinate transformation by conformal mapping. Our proposed method will be useful to determine optimum topology easily in complex design domain. Through numerical examples, we can examine the effectiveness of the proposed method.


Author(s):  
Ari Lahti

AbstractFour existing methods for partitioning biochemical reference data into subgroups are compared. Two of these, the method of Sinton et al. and that of Ichihara and Kawai, are based on a quotient of a difference between the subgroups and the reference interval for the combined distribution. The criterion of Sinton et al. appears rather stringent and could lead to recommendations to apply a common reference interval in many cases where establishment of group-specific reference intervals would be more useful. The method of Ichihara and Kawai is similar to that of Sinton et al., but their criterion, based on a quantity derived from between-group and within-group variances, seems to lead to inconsistent results when applied to some model cases. These two methods have the common weakness of using gross differences between subgroup distributions as an indicator of differences between their reference limits, while distributions with different means can actually have equal reference limits and those with equal means can have different reference limits. The idea of Harris and Boyd to require that the proportions of the subgroup distributions outside the common reference limits be kept reasonably close to the ideal value of 2.5% as a prerequisite for using common reference limits seems to have been a major improvement. The other two methods considered, that of Harris and Boyd and the “new method” follow this idea. The partitioning criteria of Harris and Boyd have previously been shown to provide a poor correlation to those proportions, however, and the weaknesses of their method are summarized in a list of five drawbacks. Different versions of the new method offer improvements to these drawbacks.


1974 ◽  
Vol 96 (2) ◽  
pp. 254-257 ◽  
Author(s):  
J. Holchendler ◽  
W. F. Laverty

Using contour integration, radiation configuration factors are derived and presented in closed form solution for the case of a differential area to a parallel disk with conical blockage and for the case of the same differential element to the conical centerbody.


2007 ◽  
Vol 546-549 ◽  
pp. 697-702 ◽  
Author(s):  
De Quan Shi ◽  
Da Yong Li ◽  
Qian Sun ◽  
Gui Li Gao

On the basis of analyzing the relationship between filling mould ability and surface tension of Al-Si alloy, a new method was put forward that filling mould ability can be fast evaluated by surface tension. To fast test surface tension of Al-Si alloy in front of furnace, a new apparatus had been developed and a new mould had been designed to appraise the ability of filling acute angle of Al-Si alloy by authors. By means of the self-developed new apparatus and new mould, the relationship between surface tension and filling mould ability had also been proved and gotten by many experiments on Al-Si alloys. Depending on the relationship the filling mould ability of Al-Si alloy can be evaluated by surface tension in few seconds before cast.


1963 ◽  
Vol 30 (2) ◽  
pp. 263-268 ◽  
Author(s):  
J. A. Schetz

The need for a general technique for the approximate solution of viscous-flow problems is discussed. Existing methods are considered and a new method is presented which results in simple closed-form solutions. The accuracy of the method is demonstrated by comparisons with the results of known exact solutions, and finally the general technique is employed to determine a new solution for the fully expanded two-dimensional laminar nozzle problem.


Author(s):  
Y. M. Xu ◽  
J. X. Zhang ◽  
F. Yu ◽  
S. Dong

At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points’ source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.


Sign in / Sign up

Export Citation Format

Share Document