scholarly journals A Novel Method to Achieve Selective Emitter Using Surface Morphology for PERC Silicon Solar Cells

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5207
Author(s):  
Minkyu Ju ◽  
Jeongeun Park ◽  
Young Hyun Cho ◽  
Youngkuk Kim ◽  
Donggun Lim ◽  
...  

Recently, selective emitter (SE) technology has attracted renewed attention in the Si solar cell industry to achieve an improved conversion efficiency of passivated-emitter rear-contact (PERC) cells. In this study, we presented a novel technique for the SE formation by controlling the surface morphology of Si wafers. SEs were formed simultaneously, that is, in a single step for the doping process on different surface morphologies, nano/micro-surfaces, which were formed during the texturing processes; in the same doping process, the nano- and micro-structured areas showed different sheet resistances. In addition, the difference in sheet resistance between the heavily doped and shallow emitters could be controlled from almost 0 to 60 Ω/sq by changing the doping process conditions, pre-deposition and driving time, and temperature. Regarding cell fabrication, wafers simultaneously doped in the same tube were used. The sheet resistance of the homogeneously doped-on standard micro-pyramid surface was approximately 82 Ω/sq, and those of the selectively formed nano/micro-surfaces doped on were on 62 and 82 Ω/sq, respectively. As a result, regarding doped-on selectively formed nano/micro-surfaces, SE cells showed a JSC increase (0.44 mA/cm2) and a fill factor (FF) increase (0.6%) with respect to the homogeneously doped cells on the micro-pyramid surface, resulting in about 0.27% enhanced conversion efficiency.

2018 ◽  
Vol 165 ◽  
pp. 06010 ◽  
Author(s):  
Matthias W. Klein ◽  
Marek Smaga ◽  
Tilmann Beck

The presented research work investigates the fatigue properties in the low cycle fatigue (LCF) regime of the high manganese metastable austenitic High Strength and Ductility (HSD®) 600 TWIP steel dependent on its surface morphology. The steel features, according to its chemical composition following the alloying concept Mn-Al-Si-C and heat treatment, a fully austenitic microstructure that shows deformation induced twinning at ambient temperature. Due to this microstructural deformation mechanism, HSD® 600 steel has an outstanding combination of strength and formability. Besides monotonic deformation behavior, characterized by tensile tests, cyclic deformation behavior was investigated with varying the surface morphology of fatigue specimens. In order to create different surface morphologies, flat fatigue specimens were excised from larger sheets by waterjet-cutting. Depending on the surface morphology, further climb milling or up-climb milling in the gauge length was performed. The three investigated morphologies (asreceived with rolling skin, climb milled and up-climb milled) differed in roughness, initial residual stresses and initial phase compositions. For all variants, total strain controlled fatigue tests with stepwise increasing load amplitudes as well as total strain controlled single step tests were performed in the low cycle fatigue regime with a load ratio of Rε = -1 and a frequency of f = 0.2 Hz. Beside stress-strain hystereses, the changes in temperature ΔT and the magnetic properties ξ were measured. The magnetic properties directly correlate with the transformation from paramagnetic γ-austenite to ferromagnetic α’-martensite. The cyclic deformation behavior of the HSD® 600 steel in the LCF regime was characterized by cyclic softening until fracture at low total strain amplitudes but changed with increasing total strain amplitudes into initial cyclic hardening followed by cyclic softening. This initial cyclic hardening became more pronounced when the total strain amplitude increased. Furthermore, single step tests at lower total strain amplitudes showed a saturation state before fracture. A comparison between the monotonic and cyclic deformation behavior showed a significant difference of the stress levels at the same amounts of plastic deformation respectively. Nevertheless, the different surface morphologies led to different lifetimes at high total strain amplitudes but to similar lifetimes at lower total strain amplitudes.


2018 ◽  
Vol 14 (4) ◽  
pp. 735-743 ◽  
Author(s):  
B. Chen ◽  
Peisheng Liu ◽  
J.H. Chen

Purpose With the nickel foam made by the technique of electrodeposition on polymer foam, the purpose of this paper is to investigate the influence of several deferent processes on the surface morphology and the specific surface area of this porous product. Design/methodology/approach The surface morphologies of the nickel foam were examined by SEM. The specific surface area of the porous product was measured by gas (N2) permeability method and also calculated by the reported formula. Findings The nickel foam from sintering in NH3 decomposition atmosphere at 850°C will achieve the same specific surface area as that at 980°C, whether this porous structure after electrodeposition comes through direct sintering in NH3 decomposition atmosphere, or through burning in air at 600°C for 4 min beforehand then the same reductive sintering. Originality/value There have been some studies on the preparation and application of nickel foam, but few works focus on the processing influence on the specific surface of this porous product. The present work provides the investigations on the difference of the product made under different producing conditions, and the influence of several deferent processes on the specific surface area of the product.


Author(s):  
R H Dixon ◽  
P Kidd ◽  
P J Goodhew

Thick relaxed InGaAs layers grown epitaxially on GaAs are potentially useful substrates for growing high indium percentage strained layers. It is important that these relaxed layers are defect free and have a good surface morphology for the subsequent growth of device structures.3μm relaxed layers of InxGa1-xAs were grown on semi - insulating GaAs substrates by Molecular Beam Epitaxy (MBE), where the indium composition ranged from x=0.1 to 1.0. The interface, bulk and surface of the layers have been examined in planar view and cross-section by Transmission Electron Microscopy (TEM). The surface morphologies have been characterised by Scanning Electron Microscopy (SEM), and the bulk lattice perfection of the layers assessed using Double Crystal X-ray Diffraction (DCXRD).The surface morphology has been found to correlate with the growth conditions, with the type of defects grown-in to the layer (e.g. stacking faults, microtwins), and with the nature and density of dislocations in the interface.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 581
Author(s):  
Kai Li ◽  
Zhenyu Zhao ◽  
Houming Zhou ◽  
Hao Zhou ◽  
Jie Yin ◽  
...  

As a surface finishing technique for rapid remelting and re-solidification, laser polishing can effectively eliminate the asperities so as to approach the feature size. Nevertheless, the polished surface quality is significantly sensitive to the processing parameters, especially with respect to melt hydrodynamics. In this paper, a transient two-dimensional model was developed to demonstrate the molten flow behavior for different surface morphologies of the Ti6Al4V alloy. It is illustrated that the complex evolution of the melt hydrodynamics involving heat conduction, thermal convection, thermal radiation, melting and solidification during laser polishing. Results show that the uniformity of the distribution of surface peaks and valleys can improve the molten flow stability and obtain better smoothing effect. The high cooling rate of the molten pool resulting in a shortening of the molten lifetime, which prevents the peaks from being removed by capillary and thermocapillary forces. It is revealed that the mechanism of secondary roughness formation on polished surface. Moreover, the double spiral nest Marangoni convection extrudes the molten to the outsides. It results in the formation of expansion and depression, corresponding to nearby the starting position and at the edges of the polished surface. It is further found that the difference between the simulation and experimental depression depths is only about 2 μm. Correspondingly, the errors are approximately 8.3%, 14.3% and 13.3%, corresponding to Models 1, 2 and 3, respectively. The aforementioned results illustrated that the predicted surface profiles agree reasonably well with the experimentally measured surface height data.


2007 ◽  
Vol 539-543 ◽  
pp. 710-715
Author(s):  
Kotaro Kuroda ◽  
Ryoichi Ichino ◽  
Masazumi Okido

Hydroxyapatite (HAp) coatings were formed on cp titanium plates and rods by the thermal substrate method in an aqueous solution that included 0.3 mM Ca(H2PO4)2 and 0.7 mM CaCl2. The coating experiments were conducted at 40-140 oC and pH = 8 for 15 or 30 min. The properties for the coated samples were studied using XRD, EDX, FT-IR, and SEM. All the specimens were covered with HAp, which had different surface morphologies such as net-like, plate-like and needle-like. After cleaning and sterilization, all the coated specimens were subjected to in vivo and vitro testing. In the in vitro testing, the mouse osteoblast-like cells (MC3T3-E1) were cultured on the coated and non-coated specimens for up to 30 days. Moreover, the specimens (φ2 x 5 mm) were implanted in rats femoral for up to 8 weeks, the osseoinductivity on them were evaluated. In in vitro evaluations, there were not significant differences between the different surface morphologies. In in vivo evaluations, however, two weeks postimplantation, new bone formed on both the HAp coated and non-coated titanium rods in the cancellous and cortical bone. The bone-implant contact ratio, which was used for the evaluation of new bone formation, was significantly dependent on the surface morphology of the HAp, and the results demonstrated that the needle-like coating appears to promote rapid bone formation.


2010 ◽  
Vol 150-151 ◽  
pp. 1546-1550 ◽  
Author(s):  
Xiang Zhu He ◽  
Xiao Wei Zhang ◽  
Xin Li Zhou ◽  
Zhi Hong Fu

This paper presented the composite coatings of nickel with graphite particle on the aluminum substrate using a nickel sulfamate bath. Effects of graphite particle concentration on the surface morphologies of the composite coatings were investigated. The inclusion of graphite particle into metal deposits was dependent on many process parameters, including particle concentration, current density, pH and temperature. Results of SEM and XRD demonstrated that graphite particle had successfully deposited on that nickel matrix; besides, the surface morphology of coatings obtained from sulfamate bath containing 2g/L graphite particle dispersed more uniformly than the ones with higher concentration.


2013 ◽  
Vol 457-458 ◽  
pp. 65-71
Author(s):  
Jing Ru Jia

The polyfunctional organic compounds 2- hydroxymethyl -1,4- butanediol (trihydric alcohol) and toluene diisocyanate -2, 4- diisocyanate (TDI) were taken as the raw materials in this study. A polyurethane dendrimer was synthesized by utilizing the difference in the reaction activity of two isocyanate groups of TDI at different temperatures. The polymerization process conditions were studied. The addition polymerization of para-position NCO groups occurred at 50 °C, and that of ortho NCO groups occurred at 90 °C. According to the structure of the dendrimer synthesized, methyl orange was used as the guest molecule. Consequently, the aqueous methyl orange showed a phase transfer. With the increase of dendrimer concentration, the transfer rate of methyl orange increased.


2021 ◽  
Vol 8 (3) ◽  
pp. 48-54
Author(s):  
Sreedhar Madichetty ◽  
Sukumar Mishra ◽  
Avram John Neroth

Author(s):  
M. Yu. Tashmetov ◽  
F. K. Khallokov ◽  
N. B. Ismatov ◽  
I. I. Yuldashova ◽  
S. Kh. Umarov

It is shown that the replacement of a part of sulfur atoms with selenium atoms in a TlInS2 single crystal stimulates the formation of a single-phase state with a monoclinic structure (space group [Formula: see text]/[Formula: see text] in TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]). Irradiation with 2 MeV electrons and a fluence of [Formula: see text] electron/cm2 of powder TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) leads to an increase in the crystallite size from 56.5 nm to 65 nm, which is most likely associated with a decrease in the interface. The difference between the surface morphology of the synthesized TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) single crystal and the surface morphology of the TlInS2 single crystal is established, which consists in a decrease in the height and width of the roughness in TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]). Irradiation of a TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) single crystal with electrons with a fluence of [Formula: see text] electron/cm2 does not lead to a change in the height of the tubercle on its surface, and the average value of its width increases more than ten-fold. The identity of the peaks in the Raman spectra of the TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) single crystal before and after its irradiation with electrons with an energy of 2 MeV and upto a fluence of [Formula: see text] electron/cm2, along with the absence of a shift of the peaks, indicates the radiation resistance of the TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) single crystal.


Sign in / Sign up

Export Citation Format

Share Document