scholarly journals Numerical Investigation on Flow Field Distribution of Eccentric Compressors Based on Steady and Unsteady CFD Methods

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6081
Author(s):  
Chao Jiang ◽  
Jun Hu ◽  
Jiayu Wang ◽  
Longteng Cong

The tip clearance has an important effect on the performance of an engine compressor. While the impact of tip clearance on a concentric compressor has been widely explored in previous research, the flow field distribution of an eccentric compressor has only been minimally explored. Both the steady and unsteady computational fluid dynamics (CFD) methods have been widely used in the studies of concentric axial-compressors, and they have similar simulation results in terms of flow field. However, they have been rarely applied to axial-compressors with non-uniform tip clearance to investigate their flow field. In this paper, ANSYS CFX is used as CFD software, and both steady and unsteady CFD methods are applied to study a single rotor of ROTOR67 to investigate the compressor characteristic line and flow field under different eccentricity conditions. The results show that non-uniform tip clearance creates a non-uniform flow field at the inlet and tip regions over the whole operating range. The circumferential position where the flow coefficient and the axial velocity are the smallest occurs at a position close to the maximum tip clearance and is located on the side deviating toward the direction of rotation of the rotor. Compared with steady CFD, unsteady CFD has better predictive capability for the flow field distribution in axial compressors with non-uniform tip clearance.

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Andreas Krug ◽  
Peter Busse ◽  
Konrad Vogeler

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex (TCV) and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step toward the characterization of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analyzed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. This paper focuses on experimental studies conducted at the newly designed low-speed cascade wind tunnel in Dresden. The general tunnel configuration and details on the specific cascade setup will be presented. Steady state flow field measurements were carried out using five-hole probe traverses up- and downstream of the cascade and accompanied by static wall pressure readings. 2D-particle image velocimetry (PIV) measurements complemented these results by visualizing the blade-to-blade flow field. Hence, the structure of the evolving secondary flow system is evaluated and compared for all tested configurations.


Author(s):  
Chengwu Yang ◽  
Xingen Lu ◽  
Yanfeng Zhang ◽  
Shengfeng Zhao ◽  
Junqiang Zhu

The clearance size of cantilevered stators affects the performance and stability of axial compressors significantly. Numerical calculations were carried out using the commercial software FINE/Turbo for a 2.5-stage highly loaded transonic axial compressor, which is of cantilevered stator for the first stage, at varying hub clearance sizes. The aim of this work is to improve understanding of the impact mechanism of hub clearance on the performance and the flow field in high flow turning conditions. The performance of the front stage and the compressor with different hub clearance sizes of the first stator has been analyzed firstly. Results show that the efficiency decreases as clearance size varies from 0 to 3% of hub chordlength, but the operating range has been extended. For the first stage, the efficiency decreases about 0.5% and the stall margin is extended. The following analysis of detailed flow field in the first stator shows that the clearance leakage flow and elimination of hub corner separation is responsible for the increasing loss and stall margin extending respectively. The effects of hub clearance on the downstream rotor have been discussed lastly. It indicates that the loss of the rotor increases and the flow deteriorates due to increasing of clearance size and hence the leakage mass flow rate, which mainly results from the interaction of upstream leakage flow with the passage flow near pressure surface. The affected region of rotor passage flow field expands in spanwise and streamwise direction as clearance size grows. The hub clearance leakage flow moves upward in span as it flows toward downstream.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Hamid Hazby ◽  
Michael Casey ◽  
Luboš Březina

The impact of the hub and shroud leakage flows on the compressor efficiency has been investigated for four compressor stages with flow coefficients of 0.017, 0.0265, 0.063, and 0.118 belonging to a family of centrifugal compressor stages, designed for process compressor applications. A very good agreement was observed between the measured and predicted performance when the detailed geometrical features were included in the calculations. The computational fluid dynamics (CFD) calculations indicated that addition of leakage cavities and leakage flows resulted in about 3% drop in stage polytropic efficiency for the highest flow coefficient stage. The detrimental effect of leakages increased to about 8% for the lowest flow coefficient stage investigated here. The increase in the compressor work input due to the disc windage and the leakage recirculation was estimated from the CFD calculations and compared with values obtained using 1D methods, showing a very good agreement between the two. The impact of parasitic losses on compressor efficiency has been investigated and the contribution of various loss sources to the stage efficiency is discussed.


Author(s):  
Peter Busse ◽  
Andreas Krug ◽  
Konrad Vogeler

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step towards the characterisation of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analyzed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. Part II of this two-part paper focuses on the numerical studies conducted with the scientific flow solver TRACE. Selected measurements, which are discussed in detail in the first part of this paper, are compared with steady state RANS simulation data to determine the validity of the computational model. For this purpose, the flow field obtained in the passage (PIV), at the cascade exit (five-hole probes) and the endwall pressure distributions were used. The presented numerical results show potentials and limitations of the steady state CFD for the prediction of the investigated flow phenomena. The computations provide the initial conditions for future unsteady calculations, and enable a separate depiction of potential effects of steady and unsteady wake-tip clearance vortex interaction.


2014 ◽  
Vol 997 ◽  
pp. 396-400
Author(s):  
Yu Guang Fan ◽  
Ting Wei

The method of computational fluid dynamics (CFD) is used to three-dimensional numerical simulation for the fluid flow process of ammonium persulfate crystallizer. By using standard model, this paper respectively simulated the flow field within the crystallizer in the impeller installation height of 1.2 m while stirring speed is of 60 r/min, 100 r/min and 200 r/min; and simulated the impact of the flow field inside the crystallizer when the stirring speed of 100 r/min and impeller installation height respectively is of 0.7 m, 1.2 m and 1.7 m. That calculation results show that: the velocity gradient is mainly concentrated in the area of internal draft tube and paddle around. With the increase of impeller speed, the flow velocity of the fluid within the crystallizer corresponding increases; and the energy also gradually decreases from mixing impeller to the settlement zone with the loss of the installation height, and the kinetic energy in the bottom of the crystallizer is reduced. Considering the energy and crystallization effect, selection of mixing speed of 100 r/min or so and installation height of about 1.2 m is more appropriate.


1996 ◽  
Author(s):  
Michael D. Hathaway ◽  
Jerry R. Wood

CFD codes capable of utilizing multi-block grids provide capability to analyze the complete geometry of centrifugal compressors including, among others, multiple splitter rows, tip clearance, blunt trailing edges, fillets, and slots between moving and stationary surfaces. Attendant with this increased capability is potentially increased grid setup time and more computational overhead — CPU time and memory requirements — with the resultant increase in “wall clock” time to obtain a solution. If the increase in “difficulty” of obtaining a solution significantly improves the solution from that obtained by modeling the features of the tip clearance flow or the typical bluntness of a centrifugal compressor’s trailing edge, then the additional burden is worthwhile. However, if the additional information obtained is of marginal use then modeling of certain features of the geometry may provide reasonable solutions for designers to make comparative choices when pursuing a new design. In this spirit a sequence of grids were generated to study the relative importance of modeling versus detailed gridding of the tip gap and blunt trailing edge regions of the NASA large low speed centrifugal compressor for which there is considerable detailed internal laser anemometry data available for comparison. The results indicate: 1) There is no significant difference in predicted tip clearance mass flow rate whether the tip gap is gridded or modeled. 2) Gridding rather than modeling the trailing edge results in better predictions of some flow details downstream of the impeller, but otherwise appears to offer no great benefits. 3) The pitchwise variation of absolute flow angle decreases rapidly up to 8% impeller radius ratio and much more slowly thereafter. Although some improvements in prediction of flow field details are realized as a result of analyzing the actual geometry there is no clear consensus that any of the grids investigated produced superior results in every case when compared to the measurements. However, if a multi-block code is available it should be used as it has the propensity for enabling better predictions than a single block code which requires modeling of certain geometry features. If a single block code must be used some guidance is offered for modeling those geometry features which can’t be directly gridded.


2004 ◽  
Vol 126 (4) ◽  
pp. 445-454 ◽  
Author(s):  
G. Scott McNulty ◽  
John J. Decker ◽  
Brent F. Beacher ◽  
S. Arif Khalid

This paper presents an experimental and analytical study of the impact of forward swept rotors on tip-limited, low-speed, multistage axial compressors. Two different configurations were examined, one with strong tip-clearance flows and the other with more moderate levels. Evaluations were done at multiple rotor tip clearances to assess differences in clearance sensitivity. Compared to conventionally stacked radial rotors, the forward swept blades demonstrated improvements in stall margin, efficiency and clearance sensitivity. The benefits were more pronounced for the configuration with stronger tip-clearance flows. Detailed flow measurements and three-dimensional viscous CFD analyses were used to investigate the responsible flow mechanisms. Forward sweep causes a spanwise redistribution of flow toward the blade tip and reduces the tip loading in terms of static pressure coefficient. This results in reduced tip-clearance flow blockage, a shallower (more axial) vortex trajectory and a smaller region of reversed flow in the clearance gap.


Author(s):  
Young-Seok Kang ◽  
Shih-Hyoung Kang

Asymmetric tip clearance in an axial compressor induces pressure and velocity redistributions along the circumferential direction in an axial compressor. This paper presents the mechanism of the flow redistribution due to the asymmetric tip clearance with a simple numerical modeling. The flow field of a rotor of an axial compressor is predicted when an asymmetric tip clearance occurs along the circumferential direction. The modeling results are supported by CFD results not only to validate the present modeling but also to investigate more detailed flow fields. Asymmetric tip clearance makes local flow area and resultant axial velocity vary along the circumferential direction. This flow redistribution ‘seed’ results in a different flow patterns according to the flow coefficient. Flow field redistribution patterns are largely dependent on the local tip clearance performance at low flow coefficients. However, the contribution of the main flow region becomes dominant while the tip clearance effect becomes weak as the flow coefficient increases. The flow field redistribution pattern becomes noticeably strong if a blockage effect is considered when the flow coefficient increases. The relative flow angle at the small clearance region decreases which result in a negative incidence angle at the high flow coefficient. It causes a recirculation region at the blade pressure surface which results in the flow blockage. It promotes the strength of the flow field redistribution at the rotor outlet. These flow pattern changes take an effect on the blade loading perturbations. The integration of blade loading perturbation from control volume of the circumferential momentum analysis leads to well-known Alford’s force. Alford’s force is always negative when the flow blockage effects are excluded. However when the flow blockage effect is incorporated into the modeling, main flow effects on the flow redistribution is also reflected on the Alford’s force at the high flow coefficient. Alford’s force steeply increases as the flow coefficient increases, because of the tip leakage suppression and strong flow redistribution. The predicted results are well agreed to CFD results by Kang and Kang (2006).


Author(s):  
Juan Du ◽  
Felix Kauth ◽  
Jichao Li ◽  
Qianfeng Zhang ◽  
Joerg R. Seume

Abstract This paper aims at experimentally demonstrating the effects of axial slot casing treatment and tip gap variation on compressor performance, unsteady tip clearance flow, and stall inception features in a highly-loaded mixed-flow compressor at partspeed. Two tip gaps (0.32% and 0.64% of rotor blade chord at mid-span) were tested at three rotational speeds. A semicircular axial slot casing treatment improves compressor stability. The experimental results show that this casing treatment significantly moves the stability limit at partial speeds towards lower mass flow for both tip gaps, compared to the reference case without casing treatment. In the case of the compressor with casing treatment, efficiency increases for the large tip gap and decreases for the small tip gap. Dynamic pressure transducers installed in the casing upstream and along the rotor tip chord direction are used to detect the unsteady behavior of tip region flow and stall inception signals of the compressor. The characteristic frequency in the tip region decreases, and the oscillating amplitude first decreases and then increases during the throttling process, regardless of tip gap size or casing treatment. For axial compressors, by contrast, the observation in previous work has been an increase of the oscillating amplitude with decreasing flow coefficient. This is a surprising result of our work. Neither experiment nor CFD so far was able to explain why the trend in this mixed-flow compressor is different from the trend expected from axial compressors. The compressor stalls through the spike stall inception both with and without casing treatment. This observation also differs from recent studies on axial compressors, which demonstrated that casing treatments could change the type of stall inception. The unstable disturbance indicating initial stall inception initially appears in the blade tip region from blade mid-chord to trailing edge, and then propagates upstream towards the leading edge. This disturbance might be generated by the reversed flow separation near mid-chord.


2021 ◽  
Author(s):  
Luying Zhang ◽  
Loukia Kritioti ◽  
Peng Wang ◽  
Jiangnan Zhang ◽  
Mehrdad Zangeneh

Abstract A deep understanding of loss mechanisms inside a turbomachine is crucial for the design and analysis work. By quantifying the various losses generated from different flow mechanisms, a targeted optimization can be carried out on the blading design. In this paper an evaluation method for computational fluid dynamics simulations has been developed to quantify the loss generation based on entropy production in the flow field. A breakdown of losses caused by different mechanisms (such as skin friction, secondary flow, tip clearance vortex and shock waves) is achieved by separating the flow field into different zones. Each zone is defined by the flow physics rather than by geometrical locations or empirical correlations, which makes the method a more general approach and applicable to different machine types. The method has been applied to both subsonic and transonic centrifugal compressors, where internal flow is complex due to the Coriolis acceleration and the curvature effect. An evaluation of loss decomposition is obtained at various operational conditions. The impact of design modification is also assessed by applying the same analysis to an optimized design.


Sign in / Sign up

Export Citation Format

Share Document