scholarly journals Microwave Spectroscopy as a Potential Tool for Color Grading Diamonds

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3507
Author(s):  
Yossi Rabinowitz ◽  
Ariel Etinger ◽  
Asher Yahalom ◽  
Haim Cohen ◽  
Yosef Pinhasi

A diamond’s color grading is a dominant property that determines its market value. Its color quality is dependent on the light transmittance through the diamond and is largely influenced by nitrogen contamination, which induces a yellow/brown tint within the diamond, as well as by structural defects in the crystal (in rare cases boron contamination results in a blue tint). Generally, spectroscopic instrumentation (in the infrared or UV–visible spectral range) is used in industry to measure polished and rough diamonds, but the results are not accurate enough for precise determination of color grade. Thus, new methods should be developed to determine the color grade of diamonds at longer wavelengths, such as microwave (MV). No difference exists between rough and polished diamonds regarding stray light when the MW frequency is used. Thus, several waveguides that cover a frequency range of 3.95–26.5 GHz, as well as suitable resonator mirrors, have been developed using transmission/reflection and resonator methods. A good correlation between the S12 parameter and the nitrogen contamination content was found using the transmission/reflection method. It was concluded that electromagnetic property measurements of diamonds in the MW frequency range can be used to determine their nitrogen content and color grading. The MW technique results were in good agreement with those obtained from the infrared spectra of diamonds.

2015 ◽  
Vol 655 ◽  
pp. 182-185
Author(s):  
Ke Lan Yan ◽  
Run Hua Fan ◽  
Min Chen ◽  
Kai Sun ◽  
Xu Ai Wang ◽  
...  

The phase structure, and electrical and magnetic properties of La0.7Sr0.3MnO3(LSMO)-xAg (xis the mole ratio,x=0, 0.3, 0.5) composite were investigated. It is found that the sample withx=0 is single phase; the samples withx=0.3 and 0.5 present three phase composite structure of the manganese oxide and Ag. With the increasing of Ag content, the grain size of the samples increases and the grain boundaries transition from fully faceted to partially faceted. The permittivity of spectrum (10 MHz - 1 GHz) and the theoretical simulation reveal that the plasma frequencyfpincrease with Ag content, due to the increasing of free electron concentration, which is further supported by the enhancement of conductivity. While for the permeability (μr'), theμr'decrease with the increasing of Ag content at low frequency range (f< 20 MHz), while at the relative high frequency range (f> 300 MHz), theμr'increased with Ag content. Therefore, the introduction of elemental Ag resulted in a higherμr'at the relative high frequency range.


2021 ◽  
Vol 899 ◽  
pp. 110-118
Author(s):  
Olga A. Ryabkova ◽  
Mariia Shirokova ◽  
E.V. Salomatina ◽  
L.A. Smirnova

Optically transparent organic-inorganic terpolymers based on poly (titanium oxide), hydroxyethyl methacrylate and organic monomers of the vinyl and (meth) acrylic series (acrylonitrile, butyl methacrylate, vinyl butyl ether, 2-ethylhexyl acrylate) were obained as a coating on silicate glass, polycarbonate, touch-up paint and metal. Materials’ light transmittance in the visible spectral range is 87 - 92% depending on the composition. The adhesion of terpolymers’ thin layers to substrates of various natures was investigated under shear deformations and by the lattice notch method according to ISO 15140. It was found that it is necessary to selectively excerpt composition of terpolymers in accordance with the nature of the substrate for creation adhesive durable coatings. The most durable coatings are formed on glass, polycarbonate and automotive enamel. It was revealed that the nature of the substrate and the composition of organic-inorganic terpolymers affect the hydrophobicity of the coatings and their ability to hydrophilize under the influence of UV-irradiation. The contact wetting angle of coatings with water, on average, reversibly varied within ~ 90 ° ↔ ~ 30 °.


Author(s):  
С.А. Козюхин ◽  
С.А. Бедин ◽  
П.Г. Рудаковская ◽  
О.С. Иванова ◽  
В.К. Иванов

AbstractThe dielectric properties of nanocrystalline tungsten oxide are studied in the temperature range of 223–293 K and in the frequency range ν = 10^–2–10^6 Hz. Powders of WO_3 with particle sizes of 110, 150, and 200 nm are prepared by the heat treatment of ammonium paratungstate at various temperatures. It is established that the frequency dependences of the conductivity for all samples increase with an increase in frequency, while the polarization characteristics ε'(ν) and ε"(ν) decrease. It is found that the frequency dependences of the conductivity are described by a function of the form ν^ s with an index in the range of (0.83–0.90) ± 0.01, which is characteristic of the “hopping” mechanism of charged-particle motion (complexes) over localized states confined by potential barriers and structural defects.


2020 ◽  
Vol 1 (1) ◽  
pp. 86-95
Author(s):  
Roman Nikolaevich ZUBOV ◽  

The urgency of the problem is conditioned by spectral methods development providing objectivity and accuracy of gemstones color grading. The purpose of the work: working-out the criteria which allows to determine gemstones saturation based on physicsmathematics patterns and spectral data. Methodology of the research: studying of colored gemstones transmittance spectra, discovery of the regularities and development of physics-mathematics methods for the color saturation grading. Results. The absolute and relative criteria for gemstone saturation grading was suggested as ratio of difference between light transmittance to squared difference between wavelengths at the area of basic chromophore element. Experimental data and allochromatic gemstones saturation calculation examples were presented considering spectral sensitivity of human eye. Summary. Gemstones absorption and transmittance spectra research allows to define tone and saturation gemstone color features. To improve tone and saturation definition accuracy, it is necessary to select standard hue of gemstones for wavelengths scale graduating along with spectral sensitivity of human eye.


2013 ◽  
Vol 774-776 ◽  
pp. 836-839
Author(s):  
Gun Li

Electromagnetic property of biological tissue is a critical issue for studying the biological effects of electromagnetic fields. In order to investigate the electrical parameters of rat blood and dispersion spectrum within the low-frequency, dielectric and conductivity parameters of rat blood was measured via HP4275A Multi Frequency LCR Meter in low frequency range (10 kHz-10 MHz), dispersive characteristics of blood electrical parameters was defined within the low-frequency. Dielectric properties of the measurement were used to compare with the theory of Cole-Cole fitting, and the fitting result shows that the Cole-Cole theory can well reflect the dielectric dispersion characteristics of rat blood. These results can be used to studying further biological effects of different frequencies electromagnetic fields.


Author(s):  
K.P.D. Lagerlof

Although most materials contain more than one phase, and thus are multiphase materials, the definition of composite materials is commonly used to describe those materials containing more than one phase deliberately added to obtain certain desired physical properties. Composite materials are often classified according to their application, i.e. structural composites and electronic composites, but may also be classified according to the type of compounds making up the composite, i.e. metal/ceramic, ceramic/ceramie and metal/semiconductor composites. For structural composites it is also common to refer to the type of structural reinforcement; whisker-reinforced, fiber-reinforced, or particulate reinforced composites [1-4].For all types of composite materials, it is of fundamental importance to understand the relationship between the microstructure and the observed physical properties, and it is therefore vital to properly characterize the microstructure. The interfaces separating the different phases comprising the composite are of particular interest to understand. In structural composites the interface is often the weakest part, where fracture will nucleate, and in electronic composites structural defects at or near the interface will affect the critical electronic properties.


Author(s):  
Joachim Frank

Cryo-electron microscopy combined with single-particle reconstruction techniques has allowed us to form a three-dimensional image of the Escherichia coli ribosome.In the interior, we observe strong density variations which may be attributed to the difference in scattering density between ribosomal RNA (rRNA) and protein. This identification can only be tentative, and lacks quantitation at this stage, because of the nature of image formation by bright field phase contrast. Apart from limiting the resolution, the contrast transfer function acts as a high-pass filter which produces edge enhancement effects that can explain at least part of the observed variations. As a step toward a more quantitative analysis, it is necessary to correct the transfer function in the low-spatial-frequency range. Unfortunately, it is in that range where Fourier components unrelated to elastic bright-field imaging are found, and a Wiener-filter type restoration would lead to incorrect results. Depending upon the thickness of the ice layer, a varying contribution to the Fourier components in the low-spatial-frequency range originates from an “inelastic dark field” image. The only prospect to obtain quantitatively interpretable images (i.e., which would allow discrimination between rRNA and protein by application of a density threshold set to the average RNA scattering density may therefore lie in the use of energy-filtering microscopes.


Author(s):  
M. Libera ◽  
J.A. Ott ◽  
K. Siangchaew ◽  
L. Tsung

Channeling occurs when fast electrons follow atomic strings in a crystal where there is a minimum in the potential energy (1). Channeling has a strong effect on high-angle scattering. Deviations in atomic position along a channel due to structural defects or thermal vibrations increase the probability of scattering (2-5). Since there are no extended channels in an amorphous material the question arises: for a given material with constant thickness, will the high-angle scattering be higher from a crystal or a glass?Figure la shows a HAADF STEM image collected using a Philips CM20 FEG TEM/STEM with inner and outer collection angles of 35mrad and lOOmrad. The specimen (6) was a cross section of singlecrystal Si containing: amorphous Si (region A), defective Si containing many stacking faults (B), two coherent Ge layers (CI; C2), and a contamination layer (D). CBED patterns (fig. lb), PEELS spectra, and HAADF signals (fig. lc) were collected at 106K and 300K along the indicated line.


Author(s):  
F. Banhart ◽  
F.O. Phillipp ◽  
R. Bergmann ◽  
E. Czech ◽  
M. Konuma ◽  
...  

Defect-free silicon layers grown on insulators (SOI) are an essential component for future three-dimensional integration of semiconductor devices. Liquid phase epitaxy (LPE) has proved to be a powerful technique to grow high quality SOI structures for devices and for basic physical research. Electron microscopy is indispensable for the development of the growth technique and reveals many interesting structural properties of these materials. Transmission and scanning electron microscopy can be applied to study growth mechanisms, structural defects, and the morphology of Si and SOI layers grown from metallic solutions of various compositions.The treatment of the Si substrates prior to the epitaxial growth described here is wet chemical etching and plasma etching with NF3 ions. At a sample temperature of 20°C the ion etched surface appeared rough (Fig. 1). Plasma etching at a sample temperature of −125°C, however, yields smooth and clean Si surfaces, and, in addition, high anisotropy (small side etching) and selectivity (low etch rate of SiO2) as shown in Fig. 2.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


Sign in / Sign up

Export Citation Format

Share Document