scholarly journals Transaction Cost and Agency Perspectives on Eco-Certification of Existing Buildings: A Study of Hong Kong

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6375
Author(s):  
Yung Yau ◽  
Huiying (Cynthia) Hou ◽  
Ka Chi Yip ◽  
Queena Kun Qian

Eco-certification schemes are usually launched with various incentives provided by local governments to facilitate green building development and building energy retrofits. A number of barriers to building energy retrofitting have been identified in previous literature, while the barriers to the eco-certification of existing buildings are under-researched. Drawing on a set of building data retrievable from the BEAM Society and other sources, we carried out an analysis and found the building energy retrofitting, as well as the certification process, were unwelcomed in multi-owned residential buildings. The identified shortfall is put forward from the perspectives of transaction cost theory and agency theory. The findings reveal that high transaction costs incurred during negotiations and coordination among a large number of co-owners within a typical apartment building can outweigh the benefits of retrofitting and eco-certification. Besides, the remuneration structure of third-party property management agents discourages agents from facilitating co-owners to initiate retrofitting. This study provides significant implications for policymakers to understand the concerns of building owners and managers over the decisions and the processes of both the building energy retrofits and eco-certification. The problems and barriers unveiled in this study will facilitate the refining of current energy efficiency policies and related incentives designs.

2021 ◽  
Vol 13 (12) ◽  
pp. 6959
Author(s):  
Najib Rahman Sabory ◽  
Tomonobo Senjyu ◽  
Adina Hashemi Momand ◽  
Hadya Waqfi ◽  
Nilofar Saboor ◽  
...  

Urbanization and technology have proven to be detrimental to the environment. Buildings contribute a significant portion of this damage. This issue motivated governments, builders, engineers, and architects to seek ways to reduce buildings’ environmental footprints. Leadership in Energy and Environmental Design (LEED), developed by the U.S. Green Building Council (USGBC), is one of the most widely used strategies to ensure energy efficiency and a clean environment in buildings. In Afghanistan, where there are no active regulatory frameworks for energy saving and efficiency for the building sector, it is imperative to promote the transformation of the building industry and practices towards sustainability. In this regard, the role of the residential building sector is of utmost importance due to its major share in the country’s energy consumption and GHG emissions profile. Thus, this study assesses the energy efficiency and environmental impact of existing buildings in Kabul city concerning the LEED rating system. This research suggests practical steps to improve the sustainability of the residential building stock in Kabul city. Robust sets of data on existing residential buildings in Kabul are collected, classified, evaluated, and compared to LEED standards. This research reveals and concludes that most of the existing buildings in Kabul city are in poor conditions and do not meet the minimum requirements to be a candidate for LEED certification. A detailed analysis of the results has led to recommendations on how these buildings could improve to meet the LEED criteria. This is the first study of its kind conducted for Kabul city residential building. Considering the cross-sectoral nature of the building industry, the findings of this study will contribute to many other areas such as water, transportation, ICT, health, energy and the environment.


2021 ◽  
Vol 271 ◽  
pp. 02011
Author(s):  
Hong Chen ◽  
Wei Luo ◽  
Fengbing Zhao ◽  
Limei Geng ◽  
Shiyun Cheng

Green building design refers to reducing the energy consumption of buildings through the use of energy-saving and environmentally-friendly technologies during the design and construction of buildings. The consumption of water resources and electric energy in office buildings is significantly higher than that of ordinary residential buildings, which has a greater impact on the environment during the construction process. Therefore, the use of green building design in the design of office buildings plays an important role in reducing building energy consumption. This article takes an office building in Chongqing as an example to explain the green optimization design and provide support for subsequent related constructions.


2021 ◽  
Vol 16 (3) ◽  
pp. 109-134
Author(s):  
Suwen Jiang ◽  
Chen Wang ◽  
Jeffrey Boon Hui Yap ◽  
Heng Li ◽  
Lincoln C. Wood ◽  
...  

ABSTRACT The window system is generally regarded as the most vulnerable building system for the indoor energy performance of green buildings. Window systems are given significant attention by architects and engineers, especially in areas with long summer and high solar radiation such as the subtropics. This study aims to develop a standard window-to-floor ratio (WFR) system for green residential buildings in the subtropics. Using Autodesk Revit as the interface, a real high-rise residential building was digitalized and imported into Ecotect for energy consumption analysis. Comparative analyses were conducted to determine the optimal WFR for building energy efficiency. Results demonstrated 0.23 as the optimal WFR in Xiamen, one of the typical subtropical cities in Asia. Furthermore, accompanied by a four-sidefins sunshade device and a double glass window (DGW) with clear “glass+air gap+reflective” glass, the building energy consumption was further reduced by 34.47% compared to the initial model, which successfully met the optimization target of 30%, set according to the green building standard. The results of this study are helpful to architects and building engineers when designing or retrofitting green buildings as we provide specific support for design features for energy performance.


2021 ◽  
Vol 13 (2) ◽  
pp. 460
Author(s):  
Aidana Tleuken ◽  
Galym Tokazhanov ◽  
Mert Guney ◽  
Ali Turkyilmaz ◽  
Ferhat Karaca

One of the consequences of COVID-19 pandemic is the momentum it has created for global changes affecting various aspects of daily lives. Among these, green building certification systems (GBCSs) should not be left behind as significant potential modifications may be required to ensure their versatility for residential buildings due to the new pandemic reality. The present study aims to evaluate the readiness of chosen GBCSs for a proper assessment of existing residential housing sustainability in a post-pandemic world. Based on a literature review of the state-of-the-art data sources and round table discussions, the present study proposes a particular set of sustainability indicators covering special sustainability requirements under pandemic conditions. Then, those indicators are used to evaluate the readiness of selected GBCSs (BREEAM, LEED, WELL, CASBEE) to meet new pandemic-resilient requirements based on their responses to the indicators. The assessment shows that none of the reviewed GBCSs are fully ready to cover all the proposed indicators. GBCSs have differing focuses on particular sustainability pillars, which also affected their responses to pandemic-resilient categories. For instance, WELL rating system successfully responded to the health and safety category, whereas LEED showed better preparedness in terms of environmental efficiency. BREEAM and CASBEE systems have a more evenly distributed attention to all three pandemic-resilient categories (Health & Safety, Environmental Resources Consumption, and Comfort) with an accent on the Comfort category. On a specific note, all GBCSs are insufficiently prepared for waste and wastewater management. In the future, GBCSs should be modified to better adapt to pandemic conditions, for which the current work may provide a basis. As an alternative, brand new standards can be created to face newly arising and evolving post-pandemic requirements.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1187
Author(s):  
Vicente Gutiérrez González ◽  
Germán Ramos Ruiz ◽  
Carlos Fernández Bandera

The need to reduce energy consumption in buildings is an urgent task. Increasing the use of calibrated building energy models (BEM) could accelerate this need. The calibration process of these models is a highly under-determined problem that normally yields multiple solutions. Among the uncertainties of calibration, the weather file has a primary position. The objective of this paper is to provide a methodology for selecting the optimal weather file when an on-site weather station with local sensors is available and what is the alternative option when it is not and a mathematically evaluation has to be done with sensors from nearby stations (third-party providers). We provide a quality assessment of models based on the Coefficient of Variation of the Root Mean Square Error (CV(RMSE)) and the Square Pearson Correlation Coefficient (R2). The research was developed on a control experiment conducted by Annex 58 and a previous calibration study. This is based on the results obtained with the study case based on the data provided by their N2 house.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4180
Author(s):  
Joowook Kim ◽  
Michael Brandemuehl

Several building energy simulation programs have been developed to evaluate the indoor conditions and energy performance of buildings. As a fundamental component of heating, ventilating, and air conditioning loads, each building energy modeling tool calculates the heat and moisture exchange among the outdoor environment, building envelope, and indoor environments. This paper presents a simplified heat and moisture transfer model of the building envelope, and case studies for building performance obtained by different heat and moisture transfer models are conducted to investigate the contribution of the proposed steady-state moisture flux (SSMF) method. For the analysis, three representative humid locations in the United States are considered: Miami, Atlanta, and Chicago. The results show that the SSMF model effectively complements the latent heat transfer calculation in conduction transfer function (CTF) and effective moisture penetration depth (EMPD) models during the cooling season. In addition, it is found that the ceiling part of a building largely constitutes the latent heat generated by the SSMF model.


2021 ◽  
Vol 13 (4) ◽  
pp. 1595
Author(s):  
Valeria Todeschi ◽  
Roberto Boghetti ◽  
Jérôme H. Kämpf ◽  
Guglielmina Mutani

Building energy-use models and tools can simulate and represent the distribution of energy consumption of buildings located in an urban area. The aim of these models is to simulate the energy performance of buildings at multiple temporal and spatial scales, taking into account both the building shape and the surrounding urban context. This paper investigates existing models by simulating the hourly space heating consumption of residential buildings in an urban environment. Existing bottom-up urban-energy models were applied to the city of Fribourg in order to evaluate the accuracy and flexibility of energy simulations. Two common energy-use models—a machine learning model and a GIS-based engineering model—were compared and evaluated against anonymized monitoring data. The study shows that the simulations were quite precise with an annual mean absolute percentage error of 12.8 and 19.3% for the machine learning and the GIS-based engineering model, respectively, on residential buildings built in different periods of construction. Moreover, a sensitivity analysis using the Morris method was carried out on the GIS-based engineering model in order to assess the impact of input variables on space heating consumption and to identify possible optimization opportunities of the existing model.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2538
Author(s):  
Praveen K. Cheekatamarla

Electrical and thermal loads of residential buildings present a unique opportunity for onsite power generation, and concomitant thermal energy generation, storage, and utilization, to decrease primary energy consumption and carbon dioxide intensity. This approach also improves resiliency and ability to address peak load burden effectively. Demand response programs and grid-interactive buildings are also essential to meet the energy needs of the 21st century while addressing climate impact. Given the significance of the scale of building energy consumption, this study investigates how cogeneration systems influence the primary energy consumption and carbon footprint in residential buildings. The impact of onsite power generation capacity, its electrical and thermal efficiency, and its cost, on total primary energy consumption, equivalent carbon dioxide emissions, operating expenditure, and, most importantly, thermal and electrical energy balance, is presented. The conditions at which a cogeneration approach loses its advantage as an energy efficient residential resource are identified as a function of electrical grid’s carbon footprint and primary energy efficiency. Compared to a heat pump heating system with a coefficient of performance (COP) of three, a 0.5 kW cogeneration system with 40% electrical efficiency is shown to lose its environmental benefit if the electrical grid’s carbon dioxide intensity falls below 0.4 kg CO2 per kWh electricity.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 442
Author(s):  
Xiaoyue Zhu ◽  
Bo Gao ◽  
Xudong Yang ◽  
Zhong Yu ◽  
Ji Ni

In China, a surging urbanization highlights the significance of building energy conservation. However, most building energy-saving schemes are designed solely in compliance with prescriptive codes and lack consideration of the local situations, resulting in an unsatisfactory effect and a waste of funds. Moreover, the actual effect of the design has yet to be thoroughly verified through field tests. In this study, a method of modifying conventional building energy-saving design based on research into the local climate and residents’ living habits was proposed, and residential buildings in Panzhihua, China were selected for trial. Further, the modification scheme was implemented in an actual project with its effect verified by field tests. Research grasps the precise climate features of Panzhihua, which was previously not provided, and concludes that Panzhihua is a hot summer and warm winter zone. Accordingly, the original internal insulation was canceled, and the shading performance of the windows was strengthened instead. Test results suggest that the consequent change of SET* does not exceed 0.5 °C, whereas variations in the energy consumption depend on the room orientation. For rooms receiving less solar radiation, the average energy consumption increased by approximately 20%, whereas for rooms with a severe western exposure, the average energy consumption decreased by approximately 11%. On the other hand, the cost savings of removing the insulation layer are estimated at 177 million RMB (1 USD ≈ 6.5 RMB) per year. In conclusion, the research-based modification method proposed in this study can be an effective tool for improving building energy efficiency adapted to local conditions.


Sign in / Sign up

Export Citation Format

Share Document