scholarly journals Types and Composition of Biomass in Biocoke Synthesis with the Coal Blending Method

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6570
Author(s):  
Erlina Yustanti ◽  
Endarto Yudo Wardhono ◽  
Anggoro Tri Mursito ◽  
Ali Alhamidi

The steelmaking industry requires coke as a reducing agent, as an energy source, and for its ability to hold slag in a blast furnace. Coking coal as raw coke material is very limited. Studying the use of biomass as a mixture of coking coal in the synthesis of biocoke is necessary to reduce greenhouse gas coal emissions. This research focuses on biomass and heating temperature through the coal blending method to produce biocoke with optimal mechanical properties for the blast-furnace standard. The heating temperature of biomass to biochar was evaluated at 400, 500, and 600 °C. The blending of coking coal with biochar was in the compositions of 95:5, 85:15, and 75:25 wt.%. A compacting force of 20 MPa was employed to produce biocoke that was 50 mm in diameter and 27 mm thick using a hot cylinder dye. The green sample was heated at 1100 °C for 4 h, followed by quenching with a water medium, resulting in dense samples. Increasing heating temperature is generally directly proportional to an increase in fixed carbon and calorific value. Biocoke that meets several blast-furnace criteria is a coal mixture with coconut-shell charcoal of 85:15 wt.%. Carbonization at 500 °C, yielding fixed carbon, calorific value, and compressive strength, was achieved at 89.02 ± 0.11%; 29.681 ± 0.46 MJ/kg, and 6.53 ± 0.4 MPa, respectively. This product meets several criteria for blast-furnace applications, with CRI 29.8 and CSR 55.1.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1192
Author(s):  
Aneta Szymajda ◽  
Grażyna Łaska ◽  
Magdalena Joka

Recently, biomass application as a renewable energy source is increasing worldwide. However, its availability differs in dependence on the location and climate, therefore, agricultural residues as cow dung (CD) are being considered to supply heat and/or power installation. This paper aims at a wide evaluation of CD fuel properties and its prospect to apply in the form of pellets to direct combustion installations. Therefore, the proximate, ultimate composition and calorific value were analyzed, then pelletization and combustion tests were performed, and the ash characteristics were tested. It was found that CD is a promising source of bioenergy in terms of LHV (16.34 MJ·kg−1), carbon (44.24%), and fixed carbon (18.33%) content. During pelletization, CD showed high compaction properties and at a moisture content of 18%,and the received pellets’ bulk density reached ca. 470 kg·m−3 with kinetic durability of 98.7%. While combustion, in a fixed grate 25 kW boiler, high emissions of CO, SO2, NO, and HCl were observed. The future energy sector might be based on biomass and this work shows a novel approach of CD pellets as a potential source of renewable energy available wherever cattle production is located.


2021 ◽  
Vol 118 (1) ◽  
pp. 109
Author(s):  
Zi Yu ◽  
Zhu Liu ◽  
Huiqing Tang ◽  
Qingguo Xue

In this research, using iron-oxide fines (average size: 2.5 μm) and biochar fines (average size: 50.0 μm), the biochar composite briquette (BCB) for blast furnace (BF) application was prepared by cold briquetting followed by heat treatment. The preparing conditions were optimized regarding its cold crushing strength. Anti-pulverization capability, reaction development, and structure evolution of the optimally-designed BCB under simulated BF conditions were then examined. Results of optimizing BCB preparation conditions showed that a heating temperature of 1073 K was optimal for preparing the BCB. The optimally-designed BCB contained 11.10 wt.% carbon, 72.21 wt.% Fe3O4, 11.25 wt.% FeO, and 0.77 wt.% Fe, 6.44 wt.% gangue, and had a cold crushing strength of 1800 N/briquette. Results of BCB behavior under simulated BF conditions showed that the cold crushing strength after partial reaction of the BCB ranged from 1500 N/briquette to 5500 N/briquette and its maximum volume shrinkage degree was 0.45. The high anti-pulverization capability of the BCB was supported by the slag matrix or the iron network. Under the simulated BF conditions, the BCB underwent five stages of reduction by atmosphere, partial self-reduction and reduction by atmosphere, full self-reduction, partial self-reduction and gasification by atmosphere, and gasification by atmosphere. It is inferred from the experimental findings that, by charging the BCB in BF, an increase of top gas utilization efficiency could be realized, and a favorable influence on lowering the temperature level of the thermal reserve zone could be obtained.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Frans Sutrisno Lebangan ◽  
Agus Triantoro ◽  
Uyu Saismana ◽  
Annisa Annisa

PT Dua Samudera Perkasa adalah salah satu usaha pengelolaan pelabuhan, merupakan usaha yang sangat mendukung kelancaran dan kecepatan distribusi hasil tambang. Adanya permintaan produk batubara yang tidak dimiliki, sehingga perusahaanpun berinisiatif untuk melakukan pencampuran batubara. Tujuannya adalah agar produk batubara dari perusahaan tersebut dapat terjual sesuai dengan permintaan pembeli.Upaya yang dilakukan adalah dengan melakukan pemisahan terhadap beberapa tipe batubara yang berbeda kualitasnya yang disediakan oleh PT Dua Samudera Perkasa. Mencoba melakukan simulasi coal blending dengan menggunakan perhitungan dengan cara teoritik untuk mengetahui nilai kualitas serta kuantitas batubara yang diinginkan oleh pembeli. Permintaan pembeli untuk nilai kualitas batubara adalah CV 5.500 Kcal/Kg, TM ≤ 38%, TS ≤ 1%, dan Ash  ≤ 8%, serta dengan kuantitas sebesar 55.000 ton.Dari hasil simulasi blending untuk semua tipe batubara yaitu dari tipe 1 hingga tipe 4 batubara, maka didapatkan pada simulasi tipe 1 dan tipe 3 menghasilkan 2 produk batubara, pada tipe 1 dan tipe 4 menghasilkan 5 produk batubara, dan pada simulas tipe 2 dan 4 menghasilkan 4 produk batubara dengan nilai calorific value, total moisture, total sulphur dan Ash yang sesuai dengan kriteria pembeli dan 9 produk lainnya tidak sesuai dengan kriteria permintaan pembeli. Dari semua produk yang telah didapatkan, maka diperoleh juga hasil simulasi yang paling direkomendasikan, yaitu pada simulasi batubara tipe 1 dan tipe 4 dengan nilai kalori 5.300 kcal/kg dan penggunaan batubaranya untuk tipe 1 sebesar 41.733 ton dan tipe 4 sebesar 13.267 ton, sehingga didapatkan harga dasar Rp. 259.859/ton. Dilihat dari harga dasar yang diperoleh dengan harga jual yang telah ditetapkan perusahaan sebesar Rp. 355.000/ton maka perusahaan memperoleh keuntungan maksimal sebesar Rp. 95.141/ton. Kata-kata kunci: Batubara, Tipe Batubara, Blending, Simulasi. 


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2249-2263
Author(s):  
María Alejandra Ramírez-Ramírez ◽  
Artemio Carrillo-Parra ◽  
Faustino Ruíz-Aquino ◽  
Luis Fernando Pintor-Ibarra ◽  
Nicolás González-Ortega ◽  
...  

This research characterized briquettes made with Pinus spp. sawdust without the use of additives. For this purpose, 19 samples of sawdust from different wood industries located in five states of the Mexican Republic were used. The densification process was carried out in a vertical hydraulic piston laboratory briquette machine. The briquettes were made with 40 g of sawdust, at 50 °C, 20 kPa and pressing for 5 min. The results obtained varied as follows: moisture content (4.1% to 7.2%), density (813.9 to 1,014.4 kg/m3), volumetric expansion (7.4% to 37.3%), compressive strength (4.9 to 40.8 N/mm), impact resistance index (46.7% to 200%), ash (0.1% to 1.1%), volatile matter (82.9% to 90.7%), fixed carbon (8.9% to 16.4%), and calorific value (20.5 to 22.8 MJ/kg). The density of the briquettes was within the “acceptable” classification (800 to 1,200 kg/m3). It was observed that, the higher the density, the lower the volumetric expansion, the higher the compressive strength, and the higher the impact resistance index. According to the ash content, the briquettes could achieve international quality. Due to high volatile matter values, rapid combustion of the briquettes with little generation of toxic smoke would be expected. Fixed carbon and calorific value results were acceptable.


Author(s):  
Wilmer Hernán Ponce ◽  
Ernesto Rosero ◽  
Gisela Latorre ◽  
Irvin Zambrano ◽  
Carolina Zambrano ◽  
...  

Use of pine nut husk (Jatropha curcas L.) and rice straw (Oriza sativa L.) for the production of pellets as biofuel Resumen El uso de los biocombustibles sólidos es una de las alternativas para reemplazar a los combustibles convencionales en la producción de energía eléctrica y calorífica. Este trabajo tiene como objeto el aprovechamiento biomásico residual de la cáscara de piñón (Jatropha curcas L.) y paja de arroz (Oriza sativa L) para la producción de pellets como biocombustible sólido. Se aplicó mediante un diseño experimental (Simplex-lattice) la mezcla en proporciones de 100%-0%, 75%-25%, 50%-50%, 25%- 75%,0%-100% respectivamente. Se efectuaron análisis a la materia prima y producto terminado en porcentaje del contenido de humedad, cenizas, volátil, carbono fijo, adicionalmente el contenido de celulosa y lignina a las materias primas. Para la obtención de pellets, se empleó un equipo de pelletizado marca KL 1500, los pellets se elaboraron con recirculación para eliminar el exceso de humedad para el mejoramiento de textura y dureza. Las mezclas de las biomasas lignocelulósicas, que presentaron un mayor contenido de carbono fijo fueron la M2 (75%-25%) =16,53 ±3,2 % y M5 (0%-100%) =23,51 ±0,72%, en lo referente a material volátil fueron la M1 (100%-0%) =82,37±2,0% y M2 (75%-25%) =81,57±3,47%. El poder calorífico calculado reveló que con una mezcla del 75% de paja de arroz con un 25% de cáscara de piñón se obtiene un poder calorífico de 29,21±0,1 Mj/Kg y la mezcla de 50% de paja de arroz y 50% de cáscara de piñón, genera un valor de 29,01±0,01 Mj/Kg. Concluyendo que las mezclas mencionada puede ser aprovechada para la generación de calor. Palabras clave: Biocombustible sólido; biomasa; pellets; arroz; piñón. Abstract The use of solid biofuels is one of the alternatives to replace conventional fuels in the production of electrical and heat energy. The objective of this work is the residual biomass utilization of the pine nut husk (Jatropha curcas L.) and rice straw (Oriza sativa L) for the production of pellets as solid biofuels. The mixture was applied using an experimental design (Simplex-lattice) in proportions of 100% -0%, 75% -25%, 50% -50%, 25% - 75%, 0% -100% respectively. Analysis of the raw material and finished product were carried out as a percentage of the moisture, ash, volatile, and fixed carbon content, in addition to the cellulose and lignin content of the raw materials. To obtain pellets, a KL 1500 brand pelletizing equipment was used, the pellets were recirculated to remove excess moisture to improve texture and hardness. The mixtures of lignocellulosic biomasses, which had a higher fixed carbon content were M2 (75% -25%) = 16.53 ± 3.2% and M5 (0% -100%) = 23.51 ± 0, 72%, regarding volatile material, were M1 (100% -0%) = 82.37 ± 2.0% and M2 (75% -25%) = 81.57 ± 3.47%. The calculated calorific value revealed that with a mixture of 75% of rice straw with 25% of pinion husk, a calorific value of 29.21 ± 0.1 Mj / Kg is obtained and the mixture of 50% of rice straw and 50% of pinion shell, generates a value of 29.01 ± 0.01 Mj / Kg. Concluding that the mentioned mixtures can be used for heat generation. Keywords:  Solid biofuel; biomass; pellets; rice; pinion.


2019 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ida Febriana ◽  
Zurohaina Zurohaina ◽  
Sahrul Effendy

Charcoal briquettes are smokeless fuels which are a type of solid fuel whose fly substance is made low enough so that the smoke generated on its utilization will not interfere with health. In this study charcoal briquettes were made from bintaro shell waste and betung bamboo using tapioca flour adhesives. This study aims to obtain the best quality sub-bituminous coal briquettes and coal briquettes. In this study the carbonization temperature used was 400ᵒC and the composition of raw materials for bintaro shells and betung bamboo was 50:50, the composition of raw materials for sub-bituminous coal and straw 90:10. The method used in this research is experiment or experimental method, with fuel value collection using ASTM D5865-03 standard. The results obtained from this study are for charcoal briquettes with 4000C carbonization temperature Inherent Moisture value of 1.91%, ash 2.29%, volatile matter 23.79%, fixed carbon 72.01% and calorific value 5878.7 kal / gr, and for coal briquettes obtained value Inherent Moisture 0.52%, ash 4.42%, volatile matter 17.98%, fixed carbon 77.08% and calorific value 7152.6 kal / gr. The fuel value of coal briquettes is greater than that of charcoal briquettes, but the combustion value of charcoal briquettes includes a good calorific value as an alternative energy source, and is in accordance with the SNI standard of 5000 kal / gr, even close to the Japanese standard 6000 cal / gr. Keywords: Bintaro, briquette, calorific value


2015 ◽  
Vol 22 (10) ◽  
pp. 3990-3998 ◽  
Author(s):  
Run-sheng Xu ◽  
Jian-liang Zhang ◽  
Hai-bin Zuo ◽  
Ke-jiang Li ◽  
Teng-fei Song ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Daegi Kim ◽  
Pandji Prawisudha ◽  
Kunio Yoshikawa

In Korea, municipal solid waste (MSW) treatment is conducted by converting wastes into energy resources using the mechanical-biological treatment (MBT). The small size MSW to be separated from raw MSW by mechanical treatment (MT) is generally treated by biological treatment that consists of high composition of food residue and paper and so forth. In this research, the hydrothermal treatment was applied to treat the surrogate MT residue composed of paper and/or kimchi. It was shown that the hydrothermal treatment increased the calorific value of the surrogate MT residue due to increasing fixed carbon content and decreasing oxygen content and enhanced the dehydration and drying performances of kimchi. Comparing the results of paper and kimchi samples, the calorific value of the treated product from paper was increased more effectively due to its high content of cellulose. Furthermore, the change of the calorific value before and after the hydrothermal treatment of the mixture of paper and kimchi can be well predicted by this change of paper and kimchi only. The hydrothermal treatment can be expected to effectively convert high moisture MT residue into a uniform solid fuel.


2016 ◽  
Vol 46 (11) ◽  
pp. 1963-1968 ◽  
Author(s):  
Ailton Leonel Balduino Junior ◽  
Thalles Yurgen Balduino ◽  
Gustavo Friederichs ◽  
Alexsandro Bayestorff da Cunha ◽  
Martha Andreia Brand

ABSTRACT: This study aimed to determine the energetic quality of the Bambusa vulgaris culms for combustion (in natura) and as a charcoal. Five individuals (culms) of Bambusa vulgaris of 3 years of age were analyzed, gathered in the city of Florianópolis, Santa Catarina. In the in natura culms it was determined the moisture content freshly gathered (39%); basic density (0.624gcm-3); the chemical composition (total extractive content (16.26%) and lignin content (25.76%)); the proximate chemical composition (volatiles content (82.25%); fixed carbon content (15.26%) and ash (2.49%)) and gross calorific value (4571kcalkg-1). In the charcoal, produced in the laboratory, the determined properties were the gravimetric yield (36.40%);the apparent density (0.372gcm-3); volatiles content (27.55%); fixed carbon content (67.32%); ash (5.12%) and gross calorific value (7431kcalkg-1). The Bambusa vulgaris species has potential for use in the energy generation either in natura, as chips for burning in boilers or in the charcoal form for domestic use, it can be used to broaden the base of biomass for energy generation and to replace the timber species of Pinus and Eucalyptus gender used for this purpose in the Southern region of Brazil.


2013 ◽  
Vol 795 ◽  
pp. 620-625
Author(s):  
A.M. Iqbal ◽  
Z.A. Zainal ◽  
A.M. Mustafa Al Bakri ◽  
M. Mazlan ◽  
S.N. Soid ◽  
...  

Torrefaction is a thermal treatment step in a relatively low temperature range of 240-300°C, which aims to produce a higher energy biomass in terms of low heating value (LHV) and light weight properties. Biomass in wood (sawdust) was used in this work due availability in tropical climate and relatively cheap. LHV of torrified sawdust was found to be increases as heating temperature increased, in absence of oxygen content. This is enhanced by way of decomposing the hemicelluloses fraction. The thermogravimetric analysis (TGA) records the changes occurred in fixed carbon, volatile and ash in which it was recorded that an increase of fixed carbon and ash is seen in the increases of temperature and a decrease of volatile is vice versa. The study provides a clearer picture of the result obtained from TGA and HHV which improvise the biomass into higher energy output.


Sign in / Sign up

Export Citation Format

Share Document