scholarly journals Impact of a Punching Process on the SyRM Iron Loss: SPICE Model as an Effective Tool for Iron Loss Modeling

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7185
Author(s):  
Zbigniew Gmyrek

Many technologies for cutting the magnetic laminations, from which electric motors cores are built, change material properties, among which are magnetizability and iron loss, thus affecting the motor parameters such as motor efficiency. This problem is particularly important for low-power motors, in which the dimensions of the magnetic circuit elements are relatively small. The correct estimation of the motor efficiency is important as early as at its design stage. This is possible when the correct material characteristics are used. This knowledge and analytical model enabling fast estimation of material properties (depending on the actual size) are necessary for engineers, who design electrical motors by analyzing many solution variants in a short time. The author proposes an analytical model of changing material properties, implemented in SPICE software. Its effectiveness was compared with measurement results while being a competitive solution in relation to other analytical models. The proposed SPICE model allowed evaluating material properties for lamination of any width. In the end, the knowledge concerning the material properties was used to calculate the iron loss in the stator of the SyRM motor, showing the need to use the material characteristics calculated for the specified width of the core piece.

Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 150
Author(s):  
Yeon-Kyu Park ◽  
Geuk-Nam Kim ◽  
Sang-Young Park

The CANYVAL-C (CubeSat Astronomy by NASA and Yonsei using a virtual telescope alignment for coronagraph) is a space science demonstration mission that involves taking several images of the solar corona with two CubeSats—1U CubeSat (Timon) and 2U CubeSat (Pumbaa)—in formation flying. In this study, we developed and evaluated structural and thermal designs of the CubeSats Timon and Pumbaa through finite element analyses, considering the nonlinearity effects of the nylon wire of the deployable solar panels installed in Pumbaa. On-orbit thermal analyses were performed with an accurate analytical model for a visible camera on Timon and a micro propulsion system on Pumbaa, which has a narrow operating temperature range. Finally, the analytical models were correlated for enhancing the reliability of the numerical analysis. The test results indicated that the CubeSats are structurally safe with respect to the launch environment and can activate each component under the space thermal environment. The natural frequency of the nylon wire for the deployable solar panels was found to increase significantly as the wire was tightened strongly. The conditions of the thermal vacuum and cycling testing were implemented in the thermal analytical model, which reduced the differences between the analysis and testing.


Author(s):  
X. Lachenal ◽  
P. M. Weaver ◽  
S. Daynes

Conventional shape-changing engineering structures use discrete parts articulated around a number of linkages. Each part carries the loads, and the articulations provide the degrees of freedom of the system, leading to heavy and complex mechanisms. Consequently, there has been increased interest in morphing structures over the past decade owing to their potential to combine the conflicting requirements of strength, flexibility and low mass. This article presents a novel type of morphing structure capable of large deformations, simply consisting of two pre-stressed flanges joined to introduce two stable configurations. The bistability is analysed through a simple analytical model, predicting the positions of the stable and unstable states for different design parameters and material properties. Good correlation is found between experimental results, finite-element modelling and predictions from the analytical model for one particular example. A wide range of design parameters and material properties is also analytically investigated, yielding a remarkable structure with zero stiffness along the twisting axis.


Author(s):  
C-M Chen ◽  
R-F Fung

The dynamic equations of a micro-positioning Scott—Russell (SR) mechanism associated with two flexible hinges and an offset are developed to calculate output responses. Both rigid and flexible hinges are considered to explore the results. The main features in the kinematics of the SR mechanism are its displacement amplification and straight-line motion, which are widely needed in practical industries. The manufacturing inaccuracy of the SR mechanism definitely causes geometric offsets of flexure hinges, and affects displacement amplification and straight-line output motion. Analytical models based on kinematics and Hamilton's principle are derived to explore the variation of linearity ratio, magnification factor, and deviation factor due to various offsets and link lengths. From numerical simulations for the SR mechanism with various offsets of flexible hinges in the conditions of different link lengths, it is found that offsets of flexure hinges obviously affect the amplifying factor and linearity ratio, and appear to dominate the changes of magnification factors. Moreover, an analytical model is also used to predict magnification factors due to various offsets. Finally, some conclusions concerning the effects of offset on the performance of the SR mechanism are drawn.


Author(s):  
Chao Liu ◽  
Yan He ◽  
Yufeng Li ◽  
Yulin Wang ◽  
Shilong Wang ◽  
...  

Abstract The residual stresses could affect the ability of components to bear loading conditions and also the performance. The researchers considered workpiece surface as a plane and ignored the effect of surface topography induced by the intermittent cutting process when modeling residual stresses. The aim of this research develops an analytical model to predict workpiece residual stresses during intermittent machining by correlating the effect of surface topography. The relative motions of tool and workpiece are analyzed for modeling thermal-mechanical and surface topography. The influence of dynamic cutting force and thermal on different positions of surface topography is also considered in analytical model. Then the residual stresses model with the surface topography effect can be developed in intermittent cutting. The analytical models of dynamic cutting force, surface topography and residual stresses are verified by the experiments. The variation trend of evaluated values of the residual stress of workpiece is basically consistent with that of measured values. The compressive residual stress of workpiece surface in highest point of the surface topography are higher than that in the lowest point.


2021 ◽  
Author(s):  
Charles Okafor ◽  
Patrick Verdin ◽  
Phill Hart

Abstract Downhole Natural Gas Separation Efficiency (NGSE) is flow regime dependent, and current analytical models in certain conditions lack accuracy. Downhole NGSE was investigated through 3D Computational Fluid Dynamics (CFD) transient simulations for pumping wells in the Churn flow regime. The Volume of Fluid (VOF) multiphase model was considered along with the k – ε turbulence model for most simulations. A mesh independence study was performed, and the final model results validated against experimental data, showing an average error of less than 6 %. Numerical simulation results showed that the steady state assumption used by current mathematical models for churn flow can be inaccurate. Several key parameters affecting the NGSE were identified, and suggestions for key improvements to the widely used mathematical formulations for viscous flow provided. Sensitivity studies were conducted on fluid/geometric parameters and operating conditions, to gain a better understanding of the influence of each parameter on NGSE. These are important results as they equip the ESP engineer with additional knowledge to maximise the NGSE from design stage to pumping operations.


Author(s):  
Zhijun Wu ◽  
Sayed A. Nassar ◽  
Xianjie Yang

The study investigates the pullout strength of self-tapping pedicle screws using analytical, finite element, and experimental methodologies with focus on medical device applications. The stress distribution and failure propagation around implant threads in the synthetic bone during the pullout process, as well as the pullout strength of pedicle screws, are explored. Based on the FEA results, an analytical model for the pullout strength of the pedicle screw is constructed in terms of the synthetic bone material properties, screw size, and implant depth. The characteristics of pullout behavior of self-tapping pedicle screws are discussed. Both the analytical model and finite element results are validated using experimental techniques.


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 305
Author(s):  
Mikhail V. Chernyshov ◽  
Karina E. Savelova ◽  
Anna S. Kapralova

In this study, we obtain the comparative analysis of methods of quick approximate analytical prediction of Mach shock height in planar steady supersonic flows (for example, in supersonic jet flow and in narrowing channel between two wedges), that are developed since the 1980s and being actively modernized now. A new analytical model based on flow averaging downstream curved Mach shock is proposed, which seems more accurate than preceding models, comparing with numerical and experimental data.


2021 ◽  
Author(s):  
Matteo Leandro ◽  
Nada Elloumi ◽  
Alberto Tessarolo ◽  
Jonas Kristiansen Nøland

<div>One of the attractive benefits of slotless machines is low losses at high speeds, which could be emphasized by a careful stator core loss assessment, potentially available already at the pre-design stage. Unfortunately, mainstream iron loss estimation methods are typically implemented in the finite element analysis (FEA) environment with a constant-coefficients dummy model, leading to weak extrapolations with huge errors. In this paper, an analytical method for iron loss prediction in the stator core of slotless PM machines is derived. It is based on the extension of the 2-D field solution over the entire machine geometry. Then, the analytical solution is combined with variable- or constant-coefficient loss models (i.e., VARCO or CCM), which can be efficiently computed by vectorized post-processing. VARCO loss models are shown to be preferred at a general level.Moreover, the paper proposes a lookup-table-based (LUT) solution as an alternative approach. The main contribution lies in the numerical link between the analytical field solution and the iron loss estimate, with the aid of a code implementation of the proposed methodology. First, the models are compared against a sufficiently dense dataset available from laminations manufacturer for validation purposes. Then, all the methods are compared for the slotless machine case. Finally, the models are applied to a real case study and validated experimentally.</div>


Author(s):  
Ladislav Starek ◽  
Milos Musil ◽  
Daniel J. Inman

Abstract Several incompatibilities exist between analytical models and experimentally obtained data for many systems. In particular finite element analysis (FEA) modeling often produces analytical modal data that does not agree with measured modal data from experimental modal analysis (EMA). These two methods account for the majority of activity in vibration modeling used in industry. The existence of these discrepancies has spanned the discipline of model updating as summarized in the review articles by Inman (1990), Imregun (1991), and Friswell (1995). In this situation the analytical model is characterized by a large number of degrees of freedom (and hence modes), ad hoc damping mechanisms and real eigenvectors (mode shapes). The FEM model produces a mass, damping and stiffness matrix which is numerically solved for modal data consisting of natural frequencies, mode shapes and damping ratios. Common practice is to compare this analytically generated modal data with natural frequencies, mode shapes and damping ratios obtained from EMA. The EMA data is characterized by a small number of modes, incomplete and complex mode shapes and non proportional damping. It is very common in practice for this experimentally obtained modal data to be in minor disagreement with the analytically derived modal data. The point of view taken is that the analytical model is in error and must be refined or corrected based on experimented data. The approach proposed here is to use the results of inverse eigenvalue problems to develop methods for model updating for damped systems. The inverse problem has been addressed by Lancaster and Maroulas (1987), Starek and Inman (1992,1993,1994,1997) and is summarized for undamped systems in the text by Gladwell (1986). There are many sophisticated model updating methods available. The purpose of this paper is to introduce using inverse eigenvalues calculated as a possible approach to solving the model updating problem. The approach is new and as such many of the practical and important issues of noise, incomplete data, etc. are not yet resolved. Hence, the method introduced here is only useful for low order lumped parameter models of the type used for machines rather than structures. In particular, it will be assumed that the entries and geometry of the lumped components is also known.


Sign in / Sign up

Export Citation Format

Share Document