scholarly journals Reliability Metrics for Generation Planning and the Role of Regulation in the Energy Transition: Case Studies of Brazil and Mexico

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7428
Author(s):  
Ana Werlang ◽  
Gabriel Cunha ◽  
João Bastos ◽  
Juliana Serra ◽  
Bruno Barbosa ◽  
...  

In recent years electricity sectors worldwide have undergone major transformations, referred to as the “energy transition”. This has required energy planning to quickly adapt to provide useful inputs to the regulation activity so that a cost-effective electricity market emerges to facilitate the integration of renewables. This paper analyzes the role of system planning and regulations on two specific elements in the energy market design: the concept of firm capacity and the presence of distributed energy resources, both of which can be influenced by regulation. We assess the total cost of different regulatory mechanisms in the Brazilian and Mexican systems using optimization tools to determine optimal long-term expansion for a given regulatory framework. In particular, we quantitatively analyze the role of the current regulation in the total cost of these two electricity systems when compared to a reference “efficient” energy planning scenario that adopts standard cost-minimization principles and that is well suited to the most relevant features of the new energy transformation scenario. We show that two very common features of regulatory designs that can lead to distortions are: (i) renewables commonly having a lower “perceived cost” under the current regulations, either due to direct incentives such as tax breaks or due to indirect access to more attractive contracts or financing conditions; and (ii) requirements for reliability are often defined more conservatively than they should be, overstating the hardships imposed by renewable generation on the existing system and underestimating their potential to form portfolios.

2020 ◽  
Vol 11 (SPL1) ◽  
pp. 716-722
Author(s):  
Sneha Dhakite ◽  
Sadhana Misar Wajpeyi

The “Coronavirus disease 19 (COVID-19)” is caused by “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, a newly discovered member of the Coronaviridae family of viruses which is a highly communicable. There is no effective medical treatment till date for Coronavirus disease hence prevention is the best way to keep disease away. Rasayana proved to be highly efficacious and cost effective for the Prevention and Control of viral infections when vaccines and standard therapies are lacking. Rasayana Chikitsa is one of the eight branches of Ashtanga Ayurveda which helps to maintain healthy life style. Rasayana improves immunity and performs many vital functions of human body. Vyadhikshamatva that is immune mechanism of the body is involved in Prevention of the occurrence of a new disease and it also decreases the virulence and progression of an existing disease. In COVID-19 the Respiratory system mainly get affected which is evident from its symptoms like cold, cough and breathlessness. Here the drugs help in enhancing immune system and strengthening functions of Respiratory system can be useful. For this purpose, the Rasayana like Chyavanprasha, Agastya Haritaki, Pippali Rasayana, Guduchi, Yashtimadhu, Haridra, Ashwagandha, Tulsi are used. Rasayana working on Respiratory system are best for Prevention of Coronavirus and boosting immune system. Rasayana Chikitsa can be effective in the Prevention as well as reducing symptoms of COVID-19.


2019 ◽  
Vol 6 (1) ◽  
pp. 48-50
Author(s):  
Ikram Uddin

This study will explain the impact of China-Pak Economic Corridor (CPEC) on logistic system of China and Pakistan. This project is estimated investment of US $90 billion, CPEC project is consists of various sub-projects including energy, road, railway and fiber optic cable but major portion will be spent on energy. This project will start from Kashgar port of china to Gwadar port of Pakistan. Transportation is sub-function of logistic that consists of 44% total cost of logistic system and 20% total cost of production of manufacturing and mainly shipping cost and transit/delivery time are critical for logistic system. According to OEC (The Observing Economic Complexity) currently, china is importing crude oil which 13.4% from Persian Gulf. CPEC will china for lead time that will be reduced from 45 days to 10 days and distance from 2500km to 1300km. This new route will help to china for less transit/deliver time and shipping cost in terms of logistic of china. Pakistan’s transportation will also improve through road, railway and fiber optic cabal projects from Karachi-Peshawar it will have speed 160km per hour and with help of pipeline between Gwadar to Nawabshah gas will be transported from Iran. According to (www.cpec.inf.com) Pakistan logistic industry will grow by US $30.77 billion in the end of 2020.


1992 ◽  
Vol 26 (7-8) ◽  
pp. 1831-1840 ◽  
Author(s):  
L. A. Roesner ◽  
E. H. Burgess

Increased concern regarding water quality impacts from combined sewer overflows (CSOs) in the U.S. and elsewhere has emphasized the role of computermodeling in analyzing CSO impacts and in planning abatement measures. These measures often involve the construction of very large and costly facilities, and computer simulation during plan development is essential to cost-effective facility sizing. An effective approach to CSO system modeling focuses on detailed hydraulic simulation of the interceptor sewers in conjunction with continuous simulation of the combined sewer system to characterize CSOs and explore storage-treatment tradeoffs in planning abatement facilities. Recent advances in microcomputer hardware and software have made possible a number of new techniques which facilitate the use of computer models in CSO abatement planning.


2020 ◽  
Vol 13 ◽  
Author(s):  
Kumari Jyoti ◽  
Punyasloka Pattnaik ◽  
Tej Singh

Background:: Synthesis of metallic nanoparticles has attracted extensive vitality in numerous research areas such as drug delivery, biomedicine, catalysis etc. where continuous efforts are being made by scientists and engineers to investigate new dimensions for both technological and industrial advancements. Amongst numerous metallic nanoparticles, silver nanoparticle (AgNPs) is a novel metal species with low toxicity, higher stability and significant chemical, physical and biological properties. Methods:: In this, various methods for the fabrication of AgNPs are summarized. Importantly, we concentrated on the role of reducing agents of different plants parts, various working conditions such as AgNO3 concentration; ratio of AgNO3/extract; incubation time; centrifugal conditions, size and shapes. Results:: This study suggested that eco-friendly and non toxic biomolecules present in the extracts (e.g. leaf, stem and root) of plants are used as reducing and capping agents for silver nanoparticles fabrication. This method of fabrication of silver nanoparticles using plants extracts is comparatively cost-effective and simple. A silver salt is simply reduced by biomolecules present in the extracts of these plants. In this review, we have emphasized the synthesis and antibacterial potential of silver nanoparticles using various plant extracts. Conclusion:: Fabrication of silver nanoparticles using plant extracts have advantage over the other physical methods, as it is safe, eco-friendly and simple to use. Plants have huge potential for the fabrication of silver nanoparticles of wide potential of applications with desired shape and size.


Author(s):  
José Juan González Márquez ◽  
Margarita González Brambila

This chapter analyses the role of electricity storage as an innovative strategy to attain the Mexican Government’s goals regarding carbon dioxide emission reduction and energy transition. The survey includes the analysis of the different electricity storage technologies as well as the legal framework governing electricity storage as the fifth link of the energy supply chain from a comparative perspective. The authors discuss whether energy storage is a generation or a distribution/transmission asset. The chapter also analyses Mexico’s experiences in energy storage and briefly describes the way it is regulated in other jurisdictions. Finally, the authors propose the regulation of energy storage as a separate licensed activity.


2021 ◽  
Vol 167 (3-4) ◽  
Author(s):  
Camilla C. N. de Oliveira ◽  
Gerd Angelkorte ◽  
Pedro R. R. Rochedo ◽  
Alexandre Szklo

Author(s):  
Santiago R. Unda ◽  
Aldana M. Antoniazzi ◽  
David J. Altschul ◽  
Roberta Marongiu

<b><i>Introduction:</i></b> Peripheral and central nervous system inflammation have been linked to the classic symptoms of Parkinson’s disease (PD) and Alzheimer’s disease (AD). However, it remains unclear whether the analysis of routine systemic inflammatory markers could represent a useful prediction tool to identify clinical subtypes in patients with Parkinson’s and Alzheimer’s at higher risk of dementia-associated symptoms, such as behavioral and psychological symptoms of dementia (BPSD). <b><i>Methods:</i></b> We performed a multivariate logistic regression using the 2016 and 2017 National Inpatient Sample with International Classification of Diseases 10th edition codes to assess if pro-inflammatory white blood cells (WBCs) anomalies correlate with dementia and BPSD in patients with these disorders. <b><i>Results:</i></b> We found that leukocytosis was the most common WBC inflammatory marker identified in 3.9% of Alzheimer’s and 3.3% Parkinson’s patients. Leukocytosis was also found to be an independent risk factor for Parkinson’s dementia. Multivariate analysis of both cohorts showed that leukocytosis is significantly decreased in patients with BPSD compared to patients without BPSD. <b><i>Conclusions:</i></b> These results suggest a link between leukocytosis and the pathophysiology of cognitive dysfunction in both PD and AD. A better understanding of the role of systemic neuroinflammation on these devastating neurodegenerative disorders may facilitate the development of cost-effective blood biomarkers for patient’s early diagnosis and more accurate prognosis.


2021 ◽  
Vol 13 (9) ◽  
pp. 5074
Author(s):  
Urooj Kanwal ◽  
Muhammad Ibrahim ◽  
Farhat Abbas ◽  
Muhammad Yamin ◽  
Fariha Jabeen ◽  
...  

Phytoremediation is a cost-effective and environmentally friendly approach that can be used for the remediation of metals in polluted soil. This study used a hedge plant–calico (Alternanthera bettzickiana (Regel) G. Nicholson) to determine the role of citric acid in lead (Pb) phytoremediation by exposing it to different concentrations of Pb (0, 200, 500, and 1000 mg kg−1) as well as in a combination with citric acid concentration (0, 250, 500 µM). The analysis of variance was applied on results for significant effects of the independent variables on the dependent variables using SPSS (ver10). According to the results, maximum Pb concentration was measured in the upper parts of the plant. An increase in dry weight biomass, plant growth parameters, and photosynthetic contents was observed with the increase of Pb application (200 mg kg−1) in soil while a reduced growth was experienced at higher Pb concentration (1000 mg kg−1). The antioxidant enzymatic activities like superoxide dismutase (SOD) and peroxidase (POD) were enhanced under lower Pb concentration (200, 500 mg kg−1), whereas the reduction occurred at greater metal concentration Pb (1000 mg kg−1). There was a usual reduction in electrolyte leakage (EL) at lower Pb concentration (200, 500 mg kg−1), whereas EL increased at maximum Pb concentration (1000 mg kg−1). We concluded that this hedge plant, A. Bettzickiana, has the greater ability to remediate polluted soils aided with citric acid application.


2021 ◽  
Vol 13 (4) ◽  
pp. 2241
Author(s):  
Moritz Ehrtmann ◽  
Lars Holstenkamp ◽  
Timon Becker

Community energy actors play an important role in the energy transition, fostering the diffusion of sustainable innovation in the renewable energy market. Because market conditions for business models in the renewable energy sector are changing and feed-in-tariff (FiT) schemes expiring, community energy companies are in the process of innovating their business models. In recent years, several community energy companies in Germany have entered the electricity retail market selling locally generated electricity from their renewable energy installations to customers in their region. We explore the evolving regional electricity business models for community energy companies in Germany, related governance structures, and the role they play for a sustainable energy transition. In order to implement these complex business models, community energy companies cooperate with professional marketing partners (intermediaries), which are capable of taking over the tasks and obligations of electricity suppliers. Through a series of expert interviews and desk research, we identify three distinctive regional electricity business models and examine opportunities and challenges to their implementation. Results show that there are different forms of cooperation, leading to specific governance structures and creating a set of new value propositions. Through these forms of cooperation, business networks emerge, which can function as incubators for sustainable innovation and learning for the post-FiT era.


Sign in / Sign up

Export Citation Format

Share Document