scholarly journals Fabrication and Characterization of Environmentally Friendly Biochar Anode

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 112
Author(s):  
Ieva Kiminaitė ◽  
Aurimas Lisauskas ◽  
Nerijus Striūgas ◽  
Žilvinas Kryževičius

Electrical power generation by means of electrochemical systems utilizing wastewaters is a global energy challenge tackling technique for which a creation of novel eco-friendly electrode materials is in high relevance. For this purpose a Rhodophyta algae derived activated biochar anode bound with a flaxseeds mucilage binder (5, 10, 20, 30 wt.%) was formed and characterized by thermogravimetric, Brunauer-Emmett-Teller (BET) analysis as well as conductivity and mechanical resistance determination. Activation technique with KOH prior to carbonization at 800 °C of algae was employed to obtain biocarbon with a large surface area. The highest specific surface area of 1298.49 m2/g was obtained with the binder-free sample and had a tendency to decrease with the increase of the binder content. It was estimated that biochar anodes are thermally stable at the temperature of up to 200 °C regardless of binder concentration. The concentration of the binder on the other hand had a significant influence in anodes mechanical resistance and electrical conductance: anode with 30 wt.% of the binder had the highest compressive strength equal to 104 bar; however, the highest conductivity was estimated in anode with 5 wt.% of the binder equal to 58 S/m. It is concluded that anode with 10 wt.% mucilage binder has the optimal properties necessary in MFC utilization.

2020 ◽  
Vol 4 (1) ◽  
pp. 9-16
Author(s):  
FS Nworie ◽  
EC Oroke ◽  
II Ikelle ◽  
JS Nworu

AbstractStudies on the adsorption of Pb(II) on plantain peels biochar (PPB) was conducted. The carbonized and activated, biochar was characterized using Braunauer-Emmett-Teller (BET) surface area and x-ray diffraction crystallography (XRD). BET analysis of the PPB indicated that the pore size (cc/g) and pore surface area (m2/g) was 8.79 and 16.69 respectively. Result of the XRD evaluated through Debye-Scherrer equation, showed a nanostructure with crystallite size of 14.56 nm. Effects of initial metal ion concentration, pH, and contact time were studied in a batch reaction process. Results showed that the adsorption of lead from aqueous solution increased with an increase in pH and initial concentration. Equilibrium modeling studies suggested that the data fitted mainly to the Langmuir isotherm. Adsorption kinetic data tested using various kinetic models fitted the Weber and Morris intraparticle diffusion model implicating pore diffusion as the main rate limiting step. The sorption studies indicated the potential of plantain peel biochar as an effective, efficient and low cost adsorbent for remediating lead (II) ions contaminated environment.


2014 ◽  
Vol 875-877 ◽  
pp. 1585-1589
Author(s):  
Arenst Andreas Arie ◽  
Joong Kee Lee

Activated carbons were prepared from coconut shell by chemical activation method and utilized as electrode materials for electrochemical double layer capacitor (EDLC). A preliminary characteristic of activated carbon from coconut shell includes the Brunnaeur Emmett Teller (BET) analysis and cyclic voltammetry measurements. The BET surface area is not affected by the variation of activation temperature as both of the samples showed BET surface area of about 850-870 m2g-1. The N2 adsorption–desorption isotherms showed that the sample exhibited type I characteristics according to IUPAC classification, which confirms its micro-porosity. Compared with the un-activated carbon samples, the activated ones exhibited the better electrochemical properties with a specific capacitance of 150 F g−1 at a scan rate of 2 mV s−1. The good performance of activated carbon is attributed to the enhancement of surface area due to the KOH pretreatment which can open new pores accessible for the ionic transport


2021 ◽  
Author(s):  
Selvam Thulasi ◽  
Veeranan Arunprasad ◽  
SIVA KARTHIK ◽  
G. Elatharasan ◽  
P. Senthil

Abstract Discovery of electrode materials with superior light harvesting performance with high conductivity nature have become more and more urgent for the field of photovoltaics and portable electronic devices. Here in, synthesis of Fe2(MoO4)3/reduced graphene oxide (RGO) nanocomposite was prepared by simple hydrothermal approach and used as high efficient dye sensitized solar cells (DSSCs). The decoration of RGO into the Fe2(MoO4)3 was proved by various physic-chemical studies such as XRD, SEM, TEM, Raman, UV, PL and BET analysis. Due to the synergic effect between the Fe2(MoO4)3 and RGO the light absorption property is significantly improved as well the high surface area (112.5 m2/g) and pore size (38.7 nm) was achieved than compared with bare Fe2(MoO4)3 (88.5 m2/g and 17.8 nm). The Fe2(MoO4)3/RGO hybrid photoanode establish to display an outstanding catalytic activity toward the reduction of triiodide to iodide in a dye-sensitized solar cell (DSSC) and can provide a solar cell efficiency of 9.65%, which is superior to a Pt-based DSSC (6.17%). The better electro-catalytic ability of Fe2(MoO4)3/RGO electrode is obtained by a synergistic effect that resulted in the high specific surface area and intrinsic reactivity of the photocathode materials.


RSC Advances ◽  
2017 ◽  
Vol 7 (24) ◽  
pp. 14516-14527 ◽  
Author(s):  
Bing Hu ◽  
Ling-Bin Kong ◽  
Long Kang ◽  
Kun Yan ◽  
Tong Zhang ◽  
...  

There is an excellent linear relationship between E-SSA and specific capacitance of HNC-IPNs as electrode materials for EDLCs.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1279
Author(s):  
Rabeay Y.A. Hassan ◽  
Ferdinando Febbraio ◽  
Silvana Andreescu

Microbial electrochemical systems are a fast emerging technology that use microorganisms to harvest the chemical energy from bioorganic materials to produce electrical power. Due to their flexibility and the wide variety of materials that can be used as a source, these devices show promise for applications in many fields including energy, environment and sensing. Microbial electrochemical systems rely on the integration of microbial cells, bioelectrochemistry, material science and electrochemical technologies to achieve effective conversion of the chemical energy stored in organic materials into electrical power. Therefore, the interaction between microorganisms and electrodes and their operation at physiological important potentials are critical for their development. This article provides an overview of the principles and applications of microbial electrochemical systems, their development status and potential for implementation in the biosensing field. It also provides a discussion of the recent developments in the selection of electrode materials to improve electron transfer using nanomaterials along with challenges for achieving practical implementation, and examples of applications in the biosensing field.


2011 ◽  
Vol 117-119 ◽  
pp. 786-789 ◽  
Author(s):  
Wen Churng Lin ◽  
Wein Duo Yang ◽  
Zen Ja Chung ◽  
Hui Ju Chueng

Titanate nanotubes were synthesized at various hydrothermal temperatures and reaction times by the hydrothermal process and used as photocatalyst. BET analysis was conducted in order to find out the surface area of these as-prepared samples and it was found that the surface area increases with rise in temperature till 130 oC. Synthesized as-prepared titanate nanotubes were applied on methylene blue degradation from aqueous media by UV irradiation. It was observed that dye removes ~99% from the aqueous media at a titanate nanotubes dose of 2 g/L.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1895
Author(s):  
Mohammad Uddin ◽  
Shane Alford ◽  
Syed Mahfuzul Aziz

This paper focuses on the energy generating capacity of polyvinylidene difluoride (PVDF) piezoelectric material through a number of prototype sensors with different geometric and loading characteristics. The effect of sensor configuration, surface area, dielectric thickness, aspect ratio, loading frequency and strain on electrical power output was investigated systematically. Results showed that parallel bimorph sensor was found to be the best energy harvester, with measured capacitance being reasonably acceptable. Power output increased with the increase of sensor’s surface area, loading frequency, and mechanical strain, but decreased with the increase of the sensor thickness. For all scenarios, sensors under flicking loading exhibited higher power output than that under bending. A widely used energy harvesting circuit had been utilized successfully to convert the AC signal to DC, but at the sacrifice of some losses in power output. This study provided a useful insight and experimental validation into the optimization process for an energy harvester based on human movement for future development.


2021 ◽  
Author(s):  
Prakash Parajuli ◽  
Sanjit Acharya ◽  
Julia Shamshina ◽  
Noureddine Abidi

Abstract In this study, alkali and alkaline earth metal chlorides with different cationic radii (LiCl, NaCl, and KCl, MgCl2, and CaCl2) were used to gain insight into the behavior of cellulose solutions in the presence of salts. The specific focus of the study was evaluation of the effect of salts’ addition on the sol-gel transition of the cellulose solutions and on their ability to form monoliths, as well as evaluation of the morphology (e.g., specific surface area, pore characteristics, and microstructure) of aerocelluloses prepared from these solutions. The effect of the salt addition on the sol-gel transition of cellulose solutions was studied using rheology, and morphology of resultant aerogels was evaluated by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, while the salt influence on the aerocelluloses’ crystalline structure and thermal stability was evaluated using powder X-Ray Diffraction (pXRD) and Thermogravimetric Analysis (TGA), respectively. The study revealed that the effect of salts’ addition was dependent on the component ions and their concentration. The addition of salts in the amount below certain concentration limit significantly improved the ability of the cellulose solutions to form monoliths and reduced the sol-gel transition time. Salts of lower cationic radii had a greater effect on gelation. However, excessive amount of salts resulted in the formation of fragile monoliths or no formation of gels at all. Analysis of surface morphology demonstrated that the addition of salts resulted in a significant increase in porosity and specific surface area, with salts of lower cationic radii leading to aerogels with much larger (~1.5 and 1.6-fold for LiCl and MgCl2, respectively) specific surface area compared to aerocelluloses prepared with no added salt. Thus, by adding the appropriate salt into the cellulose solution prior to gelation, the properties of aerocelluloses that control material’s performance (specific surface area, density, and porosity) could be tailored for a specific application.


2016 ◽  
Vol 18 (2) ◽  
pp. 141 ◽  
Author(s):  
A.A. Atchabarova ◽  
R.R. Tokpayev ◽  
A.T. Kabulov ◽  
S.V. Nechipurenko ◽  
R.A. Nurmanova ◽  
...  

<p>Electrode materials were prepared from activated carbonizates of walnut shell, apricot pits and shungite rock from “Bakyrchik” deposit, East Kazakhstan. Physicochemical characteristics of the obtained samples were studied by the Brunauer-Emett-Taylor method, scanning electron microscopy, Raman spectroscopy and other methods. Electrochemical properties of the obtained materials were studied by the method of cyclic voltammetry. It was found that the samples have an amorphous structure. Samples based on plant raw materials after hydrothermal carbonization at 240 °С during 24 h, have more homogeneous and developed surface. Specific surface area of carbon containing materials based on apricot pits is 1300 m<sup>2</sup>/g, for those on the based on mineral raw material, it is 153 m<sup>2</sup>/g. It was shown that materials after hydrothermal carbonization can be used for catalytic purposes and electrodes after thermal carbonization for analytical and electrocatalytic purposes. Electrode obtained by HTC have electrocatalytic activity. CSC 240 has high background current (slope i/Е is 43 mА V<sup>–1</sup> cm<sup>–2</sup>), low potential of the hydrogen electroreduction (more positive by ~ 0.5 V than samples based on plant raw materials). The reaction of DA determination is more pronounced on the electrodes obtained by HTC 240 °C, 24 h, due to the nature, carbon structure and high specific surface area of obtained samples.</p>


Sign in / Sign up

Export Citation Format

Share Document