scholarly journals Stratified Flow of Micropolar Nanofluid over Riga Plate: Numerical Analysis

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 316
Author(s):  
Khuram Rafique ◽  
Hammad Alotaibi ◽  
Nida Ibrar ◽  
Ilyas Khan

In this article, we present a numerical analysis of the energy and mass transport behavior of microrotational flow via Riga plate, considering suction or injection and mixed convection. The thermal stratified parameters of nanofluid are captured using an interpretation of the well-known Keller box model, which helps us to determine the characteristic properties of the physical parameters. The formulated boundary layer equations (nonlinear partial differential equations) are transformed into coupled ODEs with nonlinearities for the stratified controlled regimes. The impact of embedded flow and all physical quantities of practical interest, such as velocity, temperature, and concentration profile, are inspected and presented through tables and graphs. We found that the heat transfer on the surface decreases for the temperature stratification factor as mass transfer increases. Additionally, the fluid velocity increases as the modified Hartmann number increases.

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1077
Author(s):  
Muhammad Tamoor ◽  
Muhammad Kamran ◽  
Sadique Rehman ◽  
Aamir Farooq ◽  
Rewayat Khan ◽  
...  

In this study, a numerical approach was adopted in order to explore the analysis of magneto fluid in the presence of thermal radiation combined with mixed convective and slip conditions. Using the similarity transformation, the axisymmetric three-dimensional boundary layer equations were reduced to a self-similar form. The shooting technique, combined with the Range–Kutta–Fehlberg method, was used to solve the resulting coupled nonlinear momentum and heat transfer equations numerically. When physically interpreting the data, some important observations were made. The novelty of the present study lies in finding help to control the rate of heat transfer and fluid velocity in any industrial manufacturing processes (such as the cooling of metallic plates). The numerical results revealed that the Nusselt number decrease for larger Prandtl number, curvature, and convective parameters. At the same time, the skin friction coefficient was enhanced with an increase in both slip velocity and convective parameter. The effect of emerging physical parameters on velocity and temperature profiles for a nonlinear stretching cylinder has been thoroughly studied and analyzed using plotted graphs and tables.


2022 ◽  
Vol 52 (1) ◽  
pp. 35-41
Author(s):  
Silpisikha Goswami ◽  
Kamalesh Kumar Pandit ◽  
Dipak Sarma

Our motive is to examine the impact of thermal radiation and suction or injection with viscous dissipation on an MHD boundary layer flow past a vertical porous stretched sheet immersed in a porous medium. The set of the flow equations is converted into a set of non-linear ordinary differential equations by using similarity transformation. We use Runge Kutta method and shooting technique in MATLAB Package to solve the set of equations. The impact of non-dimensional physical parameters on flow profiles is analysed and depicted in graphs. We observe the influence of non-dimensional physical quantities on the Nusselt number, the Sherwood number, and skin friction and presented in tables. A comparison of the obtained numerical results with existing results in a limiting sense is also presented. We enhance radiation to observe the deceleration of fluid velocity and temperature profile for both suction and injection. While enhancing porosity parameter accelerates velocity whereas decelerates temperature profile. As the heat source parameter increases, the temperature of the fluid decreases for both suction and injection, it has been found. With the increasing values of the radiation parameter, the skin friction and heat transfer rate decreases. Increasing magnetic parameter decelerates the skin friction, Nusselt number, and Sherwood number.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 495 ◽  
Author(s):  
Nargis Khan ◽  
Iram Riaz ◽  
Muhammad Sadiq Hashmi ◽  
Saed A. Musmar ◽  
Sami Ullah Khan ◽  
...  

The appropriate utilization of entropy generation may provoke dipping losses in the available energy of nanofluid flow. The effects of chemical entropy generation in axisymmetric flow of Casson nanofluid between radiative stretching disks in the presence of thermal radiation, chemical reaction, and heat absorption/generation features have been mathematically modeled and simulated via interaction of slip boundary conditions. Shooting method has been employed to numerically solve dimensionless form of the governing equations, including expressions referring to entropy generation. The impacts of the physical parameters on fluid velocity components, temperature and concentration profiles, and entropy generation number are presented. Simulation results revealed that axial component of velocity decreases with variation of Casson fluid parameter. A declining variation in Bejan number was noticed with increment of Casson fluid constant. Moreover, a progressive variation in Bejan number resulted due to the impact of Prandtl number and stretching ratio constant.


2021 ◽  
Vol 13 (1) ◽  
pp. 31-45
Author(s):  
S. Hazarika ◽  
S. Ahmed

An analysis is conducted to investigate the problem of heat/mass transfer in MHD free convective flow of Casson-fluid in a vertical channel embedded with saturated porous medium past through carbon nanotubes in the form of single-wall carbon nanotubes (SWCNTs) and multiple-wall carbon nanotubes (MWCNTs) with engine oil as base fluid. In this article, the impact of CNT’s on velocity, temperature, shear stress and rate of heat transfer of the nanofluid has been investigated and studied graphically for the effects of different key physical parameters involved. The validity of this flow model is presented and is found satisfactory agreement with published results. The results state that, fluid velocity accelerates for greater values of Casson parameter and nanoparticles volume fraction, while thermal radiation (R) and heat generation (Q) assume a significant role in CNT's. Applications of this study arise in broad area of science and engineering such as thermal conductivity, energy storage, biomedical applications, air and water filtration, fibers and fabrics.


2017 ◽  
Vol 378 ◽  
pp. 85-101
Author(s):  
Md. Sarwar Alam ◽  
Oluwole Daniel Makinde ◽  
Md. Abdul Hakim Khan

A numerical investigation is performed into the heat transfer and entropy generation of a variable thermal conductivity magnetohydrodynamic flow of Al2O3-water nanofluid in a vertical channel of varying width with right porous wall, which enable the fluid to enter. The effects of the Lorentz force, buoyancy force, viscous dissipation and Joule heating are considered and modeled using the transverse momentum and energy balance equations respectively. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using appropriate similarity transformations and then solved numerically using power series with Hermite-Padé approximation method. A stability analysis has been performed for the local rate of shear stress and Nusselt number that indicates the existence of dual solution branches. Numerical results are achieved for the fluid velocity, temperature as well as the rate of heat transfer at the wall and the entropy generation of the system. The present results are original and new for the flow and heat transfer past a channel of varying width in a nanofluid which shows that the physical parameters have significant effects on the flow field.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Khuram Rafique ◽  
Hammad Alotaibi ◽  
Taher A. Nofal ◽  
Muhammad Imran Anwar ◽  
Masnita Misiran ◽  
...  

The Brownian motion and thermophoretic impacts attained a noticeable intention of the recent researchers because these factors trigger the thermal conductivity of the nanofluid. In this study, we focus on radiation and Soret effects on a slanted stretchable sheet. Buongiorno’s model is taken into account with Brownian motion and thermophoretic effects. Compatible transformations are implemented to attain the nonlinear differential equation from the boundary value PDE’s. The physical quantities of practical interest are treated by graphically as well as numerically. For numerical results, the Keller box technique is applied. The numerical outcomes through tabulated magnitudes performed a good settlement with already existing results. Energy transfer rate against involved factor exhibited via graphs. Energy and mass transport rates enhance against increment in Soret factor while skin friction diminishes. Moreover, Nusselt number and Sherwood number decrease on improving inclination while skin friction increases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nomana Abid ◽  
Muhammad Ramzan ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu

Abstract This comparative analysis studies the impact of two different nanoparticles Copper and Copper Oxide in two different partially ionized magnetofluid (water and kerosene oil mixed with Copper/Copper Oxide) flows over a linearly stretching surface. The impacts of electrons and ions collisions in the presence of the Cattaneo-Christov heat transfer model are also investigated. The effects of prominent parameters on velocity and temperature fields are depicted through graphical illustrations. A similarity transformation procedure is applied to transform the nonlinear partial differential equations to the ordinary one. Our numerical methodology is based upon the Finite difference method that is the default method in the bvp4c built-in function of the MATLAB scheme. Nusselt number and Skin drag coefficient are computed numerically and presented in tabular form for both types of nanofluids over a linear stretched surface. Our results demonstrate that the effects of CuO are dominant in comparison to the Cu on fluid velocity. The fluid temperature is more prominent in the case of Cu-water nanofluid when we increase nanoparticles concentration.


2020 ◽  
pp. 875608792095161
Author(s):  
Zaheer Abbas ◽  
Sabeeh Khaliq

This study is a non-isothermal analysis of the calendering process using a water based nanofluid with Cu-nanoparticles. The basic flow equations are simplified under the lubrication approximation theory (LAT) and non-dimensionalized. Theoretical velocity and pressure gradient solutions are achieved, and temperature distribution is numerically computed by finite difference method. The impact of nanoparticle volume fraction on pressure distribution, fluid velocity, temperature distribution, power input, and separating force are presented through graphs and discussed. Nanoparticle volume fraction enhances the magnitude of pressure, pressure gradient, and temperature distribution. Power input and roll-separating force also rise for higher nanoparticle volume fraction. Model II of dynamic viscosity of nanofluid has a greater impact on physical parameters as compared to the model I of dynamic viscosity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anwar Saeed ◽  
Poom Kumam ◽  
Saleem Nasir ◽  
Taza Gul ◽  
Wiyada Kumam

AbstractTo enhance the surface properties of solids the mechanism of thin films is frequently used. Penetration, degradation, stiffness, illumination, diffusion, absorption, and electric performance are all characteristics of a bulk substance medium that a thin film can improve. In nanotechnology, thin film processing can be extremely useful. Therefore, the time-dependent nonlinearly convective stream of thin film nanoliquid over an inclined stretchable sheet with magnetic effect is investigated in current work. The features of mass and heat transport processes are explained using important factors like thermophoresis and Brownian movement. Nonlinear partial differential equations are obtained to model the time-dependent liquid film flow over an inclined surface, which are then turned into couple ordinary differential equations utilizing appropriate alterations. The results of the computation of the model problem are collected using an analytical approach Homotopy Analysis Method and presented the final finding numerically and graphically. During the flow assessment, the impact of individual flow factors such as magnetic, Brownian, and thermophoresis parameters on regular profiles (temperature, velocity, and concentration) are analyzed and found to be quite remarkable. Furthermore, the consequence of M and Nt factors on the velocity, concentration and thermal distribution leads to diminishing conduct. On the other hand, the thermal profile of the liquid film rises in response to the thermophoresis factor. The % wise variation in the skin friction, Nusselt number and Sherwood number versus physical parameters has been obtained and discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
K. Loganathan ◽  
Nazek Alessa ◽  
Safak Kayikci

The impact of heat-absorbing viscoelastic nanofluidic flow along with a convectively heated porous Riga plate with Cattaneo-Christov double flux was analytically investigated. The Buongiorno model nanofluid was implemented with the diversity of Brownian motion and thermophoresis. Making use of the transformations; the PDE systems are altered into an ODE system. We use the homotopy analysis method to solve these systems analytically. The reaction of the apposite parameters on fluid velocity, fluid temperature, nanoparticle volume fraction skin friction coefficients (SFC), local Nusselt number and local Sherwood number are shown with vividly explicit details. It is found that the fluid velocities reflect a declining nature for the development of viscoelastic and porosity parameters. The liquid heat becomes rich when escalating the radiation parameter. In addition, the nanoparticle volume fraction displays a declining nature towards the higher amount of thermophoresis parameter, whereas the inverse trend was obtained for the Brownian motion parameter. We also found that the fluid temperature is increased in viscoelastic nanofluid compared to the viscous nanofluid. When we change the fluid nature from heat absorption to heat generation, the liquid temperature also rises. In addition, the fluid heat is suppressed when we change the flow medium from a stationary plate to a Riga plate for heat absorption/generation cases.


Sign in / Sign up

Export Citation Format

Share Document