scholarly journals Redeployment of Shoots into Better-Lit Positions within the Crowns of Saplings of Five Species with Different Growth Patterns

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1301 ◽  
Author(s):  
Kohei Koyama ◽  
Hiroyuki Shirakawa ◽  
Kihachiro Kikuzawa

Research Highlights: We demonstrate the first quantitative evidence that the shoot shedding of fast-growing species growing in a high-light environment is part of the process of shoot redeployment into better-lit outer parts of the crown. Background and Objectives: Light foraging by redeploying organs from shaded regions of a tree crown into better-lit regions is considered to apply to both leaves and shoots. To date, however, this hypothesis has never been tested for shoots. Materials and Methods: We investigated the shoot dynamics of saplings of five deciduous woody species. We included fast-growing and slow-growing species (Alnus sieboldiana Matsum., Castanea crenata Siebold & Zucc., Betula ermanii Cham., Acer distylum Siebold & Zucc., and Fagus crenata Blume). Results: Shoots in the shaded regions of the crowns of the fast-growing trees showed higher mortality rates than those at better-lit positions. Because of the selective shedding of the shaded shoots, at the end of the growth period the light environment experienced by the shoots that survived until the following spring was similar to that at the early stage of the same growth period. By contrast, the slow-growing trees displayed slow and determinate growth, with a very low mortality rate of shoots at all positions in the crown. Conclusions: The rapid shoot turnover of the fast-growing species resulted in the redeployment of shoots into better-lit positions within the tree crown in a manner similar to the redeployment of leaves.

2016 ◽  
Vol 5 (2) ◽  
pp. 20-24
Author(s):  
Alexandr Zakharovych Glukhov ◽  
Lyudmila Valerievna Kharkhota ◽  
Georgy Alexandrovych Pasternak ◽  
Elena Nikolaevna Likhatskaya

We present the study results of modern dendroflora of Donetsk (a large industrial city of the south steppe zone). We have determined the species composition, analyzed the age structure of plantations, estimated the life condition of trees and shrubs. Plantations compose 76 species and 32 forms, types, sorts of trees, including 11 species and 9 sorts of the coniferous, as well as 79 species and 35 forms, sorts of shrubs, including 7 species and 19 sorts of the coniferous. Trees and shrubs belong to 78 genera, which are included into 38 families. The most represented family among the deciduous is Rosaceae Juss. - 46 species and 13 sorts, among the coniferous - Pinaceae Lindl. (9 species and 6 sorts), Cupressaceae Rich. ex Bartl. (7 species and 22 sorts). Tree species dominating in plantations are Populus bolleana Lauche (14,6% of the total number of trees), dominating shrubs are the sorts of Rosa hybrida (44,0% of the total number of shrubs). In the plantations studied we have indicated 33 species of trees and shrubs of the aboriginal fraction of local flora. Analysis of the age structure of plantations revealed that the majority of trees compose the age group of 20-29 years, the majority of shrubs - up to 10 years. Fast-growing species prevail in plantations (73% of the total number). Viability of the most part of trees of fast-growing and slow-growing species is estimated by 4 points, viability of moderate-growing species - by 6 points. The number of trees being in unsatisfactory condition (0 or 1-3 points) prevails among fast-growing species.


Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 428 ◽  
Author(s):  
Valentina Carrasco-Carballido ◽  
Cristina Martínez-Garza ◽  
Héctor Jiménez-Hernández ◽  
Flavio Márquez-Torres ◽  
Julio Campo

Deforestation of tropical dry forest reduces soil fertility, with negative effects on future restoration intervention. To evaluate the effect of initial soil properties on three-year performance of six tree species in restoration settings, we measured C, N, and P contents in topsoils of 48 plots under minimal (exclusions of livestock grazing) and maximal (plantings of six native species) restoration intervention during two years in tropical dry forest in central Mexico. Survival and height and diameter relative growth rates were evaluated by species and by growth rank (three fast- and three slow-growing species). After two years, organic C and the C:N ratio increased early during natural succession; these increases might be related to high density of N2-fixing recruits at both intervention levels. Changes in N availability for plants (i.e., NO3− and NH4+ contents) occurred after cattle exclusion. After 40 months, the fast-growing legume Leucaena esculenta (DC.) Benth. had the highest survival (65.55%) and relative growth rate in both height (3.16%) and diameter (5.67%). Fast-growing species had higher survival and diameter growth rates than slow-growing species. Higher diameter growth rates for fast-growing species may be associated with a higher ability to forage for soil resources, whereas similar height growth rates for slow and fast-growing species suggested low competition for light due to slow natural succession at the site. Planted seedlings had higher survival possibly due to initial high NO3− content in the soil. Also, fast-growing species seem to benefit from initially higher pH in the soil. Both soil properties (i.e., pH and NO3−) may be augmented to favor the performance of fast-growing species in restoration plantings and to further accelerate soil recovery in tropical dry forests.


1989 ◽  
Vol 35 (5) ◽  
pp. 578-582 ◽  
Author(s):  
James L. Sinclair ◽  
Martin Alexander

The survival of six bacterial species that had different growth rates was tested in raw sewage and sewage that was rendered free of protozoa. When test bacteria were added to protozoa-free sewage at densities of approximately 105 to 106 cells/mL, five of the six species did not decline below 105 cells/mL. If protozoa were present, the population sizes of all test species were markedly reduced, but bacterial species able to grow faster in artificial media had the larger number of survivors. When the same bacteria were inoculated into protozoa-free sewage at densities of less than 103 cells/mL, only the three species able to grow quickly in artificial media increased in abundance. When the six species were inoculated at the same densities into sewage containing protozoa, the three slow-growing species were rapidly eliminated, and two of the three fast-growing species survived in detectable numbers. We suggest that in environments with intense protozoan predation, protozoa may alter the composition of the bacterial community by eliminating slow-growing bacteria.Key words: growth rate, predation, protozoa, sewage.


2021 ◽  
Author(s):  
Roberto Coppo ◽  
Jumpei Kondo ◽  
Keita Iida ◽  
Mariko Okada ◽  
Kunishige Onuma ◽  
...  

The dynamic and heterogeneous features of cancer stem-like cells (CSCs) have been widely recognized, but their nongenetic cellular plasticity mechanisms remain elusive. By using colorectal cancer organoids, we phenotypically tracked their spheroid formation and growth capacity to a single-cell resolution, and we discovered that the spheroid-forming cells exhibit a heterogeneous growth pattern, consisting of slow- and fast-growing spheroids. The isolated fast-growing spheroids seem to preserve a dual-growing pattern through multiple passages, whereas the isolated slow-growing spheroids are restricted to a slow-growing pattern. Notably, the spheroids of both patterns were tumorigenic. Moreover, the expression of CSC markers varied among the subpopulations with different growth patterns. The isolated slow-growing spheroids adopted the dual-growing pattern by various extrinsic triggers, in which Musashi-1 plays a key role. The slow-growing fraction was resistant to chemotherapy, and its successful isolation can provide an in vitro platform allowing us to elucidate their role in drug resistance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tiedong Liu ◽  
Kai Jiang ◽  
Zhaoyuan Tan ◽  
Qifang He ◽  
Hui Zhang ◽  
...  

Deforestation continues to be extensive in the tropics, resulting in reduced soil water content. Reforestation is an effective way to recover soil water content, but the recovery depends on the type of reforestation efforts that are implemented. Monoculture of fast-growing species is a common reforestation strategy, because it is an effective means of preventing landslides resulting from the frequent typhoons and heavy rains in the tropics and easy to implement. To quantify whether monoculture plantings can help recover soil water content, we initiated a reforestation project within a 0.2 km2 area of an extremely degraded tropical monsoon forest. We hypothesized that much higher transpiration rate of fast-growing tree species would deplete soil water more than the dominant slow-growing species in the adjacent secondary tropical rain forest during both wet and dry seasons, thereby resulting in much lower soil water content. To test this hypothesis, we compared transpiration rates and key functional traits that can distinguish transpiration rates between fast-growing and dominant slow-growing species in both wet and dry seasons. We also quantified whether soil water content around these species differed. We found that fast-growing species had transpiration rate and transpiration-related trait values that were 5–10 times greater than the dominant slow-growing species in both seasons. We also found that soil water content around dominant slow-growing species was 1.5–3 times greater than for fast-growing species in both seasons. Therefore, reforestation based on monoculture plantings of fast-growing species seems difficult to effectively recover the soil water content. We also provide a simple method for guiding the use of reforestation efforts to recover soil water content in extremely degraded tropical rain forests. We expect that this simple method can be an effective means to restore extremely degraded tropical rain forests in other parts of the world.


2012 ◽  
Vol 28 (3) ◽  
pp. 281-289 ◽  
Author(s):  
Ryo. O. Suzuki ◽  
Shinya Numata ◽  
Toshinori Okuda ◽  
Nur Supardi MD. Noor ◽  
Abdul Rahman Kassim ◽  
...  

Abstract:Spatial association patterns reflect underlying mechanisms of coexistence, community structure of plant species in tropical forests. We hypothesized that if spatial associations between two species shift toward segregation patterns during the course of growth, deterministic mechanisms, such as interspecific competition and habitat differentiation, would prevail, whereas if no directed change in spatial associations between two species is observed and, consequently, the initial association pattern is retained through growth, the two species would experience weak interspecific competition and show no habitat differentiation. To assess the underlying mechanisms operating between confamilial species, we analysed spatial associations among 11 dipterocarp species in terms of three growth stages distinguished on the basis of dbh in the Pasoh 50-ha plot in Peninsular Malaysia. We analysed the spatial associations of all possible combinations among identical stages (165 pairs) and among different stages (330 pairs) for each pair of 11 species, except between identical species. Our previous study revealed that the 11 species could be characterized into two classes: seven fast-growing species exhibited high growth and mortality rates, spatial aggregation on a small scale, and positive habitat associations, while four slow-growing species exhibited low growth and mortality rates, spatial aggregation on a large scale, and no habitat associations except one. Spatial segregation was observed between fast-growing species (32 pairs, 17%) and between species of different classes (35 pairs, 14%), but not between slow-growing species. Throughout the growth stages, positive associations with other species were maintained for slow-growing species versus fast-growing species. In contrast, changes in initial associations toward segregation were observed more in fast-growing species. These results indicated that interspecific competition or habitat differentiation dominated for fast-growing species, while non-directed random processes dominated for slow-growing species.


2015 ◽  
Vol 282 (1813) ◽  
pp. 20151053 ◽  
Author(s):  
Malin L. Pinsky ◽  
David Byler

Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species.


2017 ◽  
Vol 13 (5) ◽  
pp. 20170120 ◽  
Author(s):  
Ernesto Gianoli ◽  
Cristian Salgado-Luarte

The resource availability hypothesis (RAH), the most successful theory explaining plant defence patterns, predicts that defence investment is related to the relative growth rate (RGR) of plant species, which is associated with habitat quality. Thus, fast-growing species should show lower resistance than slow-growing species, which would lead fast growers to sustain higher herbivory rates, but the fitness consequences of herbivory would be greater for slow growers. The latter is often assumed but rarely tested. In a temperate rainforest, we tested the expected pattern of tolerance to herbivory derived from the RAH: that fast-growing species should be more tolerant than slow-growing species. We also evaluated whether other plant features covary with RGR (leaf lifespan, shade tolerance and leaf toughness) and thus could also contribute to the patterns of tolerance to herbivory. As expected, seedlings from tree species with higher RGR showed greater tolerance to herbivory. Among the three plant features included, only leaf lifespan showed a significant association with RGR, but RGR was the best predictor of tolerance. We argue that plant tolerance to herbivory must be evaluated to properly verify the assumptions of the RAH.


2021 ◽  
Vol 918 (1) ◽  
pp. 012025
Author(s):  
F G Dwiyanti ◽  
H H Rachmat ◽  
A Susilowati ◽  
I Z Siregar ◽  
K S Yulita

Abstract Enhancing green open spaces in cities and their buffer areas has gained increasing recognition. While creating a more sustainable, liveable, and comfortable environment, green spaces could also provide an effort for plant domestication and conservation. We consider the potential urban greening and conservation action by planting five tree species consisting of one highly valuable and slow-growing species Eusideroxylon zwageri trees from four different origins and four fast-growing species of Duabanga moluccana, Anthocephalus macrophyllus, Duabanga grandifolia, and kayu papaya at the water reserve in suburban Ciherang-Bogor. Growth performance on mortality rate and the average height of the 4.5-year-old planted seedlings were observed to evaluate the adaptability and suitability of the species in the area. The results of mortality rate revealed that E. zwageri seedlings were ranged from 35% (from South Kalimantan) to 50% (from Jambi), while the four fast-growing species were ranged from 14% (Kayu papaya) to 83% (Duabanga moluccana) indicated that the mortality rate for the five species of seedlings planted varied. Whereas, the results of average height showed that E. zwageri seedlings were ranged from 196.15 cm (South Kalimantan) to 332.50 cm (Natuna), and four fast-growing species was ranged from 582.35 cm (Duabanga grandiflora) to 1411.10 cm (Anthocephalus macrophyllus) indicated that planting fast-growing trees in the suburban area is suitable to increase land coverage in a relatively short time, while slow-growing species are more suitable for species preservation purposes.


Sign in / Sign up

Export Citation Format

Share Document