scholarly journals Volatile Profiling of Pleurotus eryngii and Pleurotus ostreatus Cultivated on Agricultural and Agro-Industrial By-Products

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1287
Author(s):  
Dimitra Tagkouli ◽  
Georgios Bekiaris ◽  
Stella Pantazi ◽  
Maria Eleni Anastasopoulou ◽  
Georgios Koutrotsios ◽  
...  

The influence of genetic (species, strain) and environmental (substrate) factors on the volatile profiles of eight strains of Pleurotus eryngii and P. ostreatus mushrooms cultivated on wheat straw or substrates enriched with winery or olive oil by products was investigated by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). Selected samples were additionally roasted. More than 50 compounds were determined in fresh mushroom samples, with P. ostreatus presenting higher concentrations but a lower number of volatile compounds compared to P. eryngii. Roasting resulted in partial elimination of volatiles and the formation of pyrazines, Strecker aldehydes and sulfur compounds. Principal component analysis on the data obtained succeeded to discriminate among raw and cooked mushrooms as well as among Pleurotus species and strains, but not among different cultivation substrates. Ketones, alcohols and toluene were mainly responsible for discriminating among P. ostreatus strains while aldehydes and fatty acid methyl esters contributed more at separating P. eryngii strains.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2604
Author(s):  
Zhulin Wang ◽  
Rong Dou ◽  
Ruili Yang ◽  
Kun Cai ◽  
Congfa Li ◽  
...  

The change in phenols, polysaccharides and volatile profiles of noni juice from laboratory- and factory-scale fermentation was analyzed during a 63-day fermentation process. The phenol and polysaccharide contents and aroma characteristics clearly changed according to fermentation scale and time conditions. The flavonoid content in noni juice gradually increased with fermentation. Seventy-three volatile compounds were identified by solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC-MS). Methyl hexanoate, 3-methyl-3-buten-1-ol, octanoic acid, hexanoic acid and 2-heptanone were found to be the main aroma components of fresh and fermented noni juice. A decrease in octanoic acid and hexanoic acid contents resulted in the less pungent aroma in noni juice from factory-scale fermentation. The results of principal component analysis of the electronic nose suggested that the difference in nitrogen oxide, alkanes, alcohols, and aromatic and sulfur compounds, contributed to the discrimination of noni juice from different fermentation times and scales.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 83
Author(s):  
Dong Han ◽  
Chun-Hui Zhang ◽  
Marie-Laure Fauconnier

The study aimed to investigate the influence of seasoning formulations (SP1: water; SP2: water and salt; SP3: water, salt and spices; SP4: water, salt, spices and soy sauce; SP5: water, salt, spices, soy sauce, sugar; SP6: water, salt, spices, soy sauce, sugar and cooking wine) on the volatile profiles and sensory evaluation of stewed pork. Volatile compounds were extracted using solid phase microextraction (SPME), then analysed by gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and two-dimensional gas chromatographic combined with time-of-fight mass spectrometry (GC × GC-TOFMS). The results revealed that the most abundant volatile compounds, especially aldehydes, were presented in the stewed pork using SP1 and SP2. This indicated that the stewed pork with water and salt could promote lipid oxidation and amino acid degradation. As revealed by principal component analysis (PCA), the stewed pork samples with SP3 were located on the opposite side of that with SP4, SP5, and SP6 in the first and third principal component (PC1-PC3), which indicated that the overall flavour formed by adding spices was significantly different from that of adding soy sauce, sugar, and cooking wine. Sensory evaluation showed that stronger spicy, caramel, and soy sauce odour were present in samples SP3, SP4, SP5, and SP6. This study has indicated that the addition of food seasoning had a positive effect on flavour profiles of stewed pork, particularly for salt and spices.


Author(s):  
Christof B. Steingass ◽  
Jennifer Dickreuter ◽  
Sabine Kuebler ◽  
Ralf M. Schweiggert ◽  
Reinhold Carle

AbstractGreen-ripe pineapples are shipped overseas by sea freight, while those picked at full maturity need to be transported by airfreight over the same large distance. In this study, fresh-cut pineapple cubes were assessed two, five, and eight days after processing from green-ripe pineapples after mimicked sea freigh (SF) and fully ripe air-freighted (AF) pineapples. The sea-freighted samples displayed elevated titratable acidity (TA), thus resulting in smaller ratios of total soluble solids and TA compared to the AF pineapples. Differences in the carotenoid levels of the two fresh-cut categories were found to be insignificant. By contrast, hierarchical cluster analysis (HCA) and principal component analysis (PCA) calculated on the basis of the volatiles analysed by headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-SPME–GC–MS) permitted to distinguish all six individual sample types and to segregate them into two major clusters (SF and AF). The effect of storage on the volatiles was further evaluated by partial least squares (PLS) regression. Substantial chemical markers to differentiate the individual samples and to describe the effect of storage were deduced from the PCA and PLS regression, respectively. In general, fresh-cut products obtained from fully ripe AF fruit displayed higher concentrations of volatiles, in particular, increased concentrations of diverse methyl esters. With progressing storage duration, the concentrations of ethanol and diverse ethyl esters increased. Moreover, products from AF pineapples displayed lower microbial counts compared to those from SF fruit.


2021 ◽  
Vol 11 (13) ◽  
pp. 5855
Author(s):  
Samantha Reale ◽  
Valter Di Cecco ◽  
Francesca Di Donato ◽  
Luciano Di Martino ◽  
Aurelio Manzi ◽  
...  

Celery (Apium graveolens L.) is a vegetable belonging to the Apiaceae family that is widely used for its distinct flavor and contains a variety of bioactive metabolites with healthy properties. Some celery ecotypes cultivated in specific territories of Italy have recently attracted the attention of consumers and scientists because of their peculiar sensorial and nutritional properties. In this work, the volatile profiles of white celery “Sedano Bianco di Sperlonga” Protected Geographical Indication (PGI) ecotype, black celery “Sedano Nero di Torricella Peligna” and wild-type celery were investigated using head-space solid-phase microextraction combined with gas-chromatography/mass spectrometry (HS-SPME/GC-MS) and compared to that of the common ribbed celery. Exploratory multivariate statistical analyses were conducted using principal component analysis (PCA) on HS-SPME/GC-MS patterns, separately collected from celery leaves and petioles, to assess similarity/dissimilarity in the flavor composition of the investigated varieties. PCA revealed a clear differentiation of wild-type celery from the cultivated varieties. Among the cultivated varieties, black celery “Sedano Nero di Torricella Peligna” exhibited a significantly different composition in volatile profile in both leaves and petioles compared to the white celery and the prevalent commercial variety. The chemical components of aroma, potentially useful for the classification of celery according to the variety/origin, were identified.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1180
Author(s):  
Xiaoyu Yin ◽  
Qian Chen ◽  
Qian Liu ◽  
Yan Wang ◽  
Baohua Kong

Smoking is mainly used to impart desirable flavour, colour and texture to the products. Various food smoking methods can be divided into traditional and industrial methods. The influences of three different smoking methods, including traditional smouldering smoke (TSS), industrial smouldering smoke (ISS) and industrial liquid smoke (ILS), on quality characteristics, sensory attributes and flavour profiles of Harbin red sausages were studied. The smoking methods had significant effects on the moisture content (55.74–61.72 g/100 g), L*-value (53.85–57.61), a*-value (11.97–13.15), b*-value (12.19–12.92), hardness (24.25–29.17 N) and chewiness (13.42–17.32). A total of 86 volatile compounds were identified by headspace solid phase microextraction combined with comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Among them, phenolic compounds were the most abundant compounds in the all sausages. Compared with sausages smoked with smouldering smoke, the ILS sausages showed the highest content of volatile compounds, especially phenols, alcohols, aldehydes and ketones. Principal component analysis showed that the sausages smoked with different methods had a good separation based on the quality characteristics and GC × GC-qMS data. These results will facilitate optimising the smoking methods in the industrial production of smoked meat products.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 192
Author(s):  
Pengrui Wang ◽  
Jiapeng Chen ◽  
Lujing Chen ◽  
Li Shi ◽  
Hongbing Liu

Plant volatile organic compounds (VOCs) represent a relatively wide class of secondary metabolites. The VOC profiles of seven seaweeds (Grateloupia filicina, Polysiphonia senticulosa, Callithamnion corymbosum, Sargassum thunbergii, Dictyota dichotoma, Enteromorpha prolifera and Ulva lactuca) from the Yellow Sea of China were investigated using multifiber headspace solid phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC–MS), among them, the VOCs of three red algae Grateloupia filicina, Polysiphonia senticulosa, and Callithamnion corymbosum were first reported. Principal component analysis (PCA) was used to disclose characteristic categories and molecules of VOCs and network pharmacology was performed to predict potential biomedical utilization of candidate seaweeds. Aldehyde was found to be the most abundant VOC category in the present study and (E)-β-ionone was the only compound found to exist in all seven seaweeds. The chemical diversity of aldehydes in E. prolifera suggest its potential application in chemotaxonomy and hinted that divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber is more suitable for aldehyde extraction. VOCs in D. dichotoma were characterized as sesquiterpenes and diterpenes and the most relevant pharmacological pathway was the neuroactive ligand–receptor interaction pathway, which suggests that D. dichotoma may have certain preventive and therapeutic values in cancer, especially in lung cancer, in addition to neuropsychiatric diseases.


2022 ◽  
Vol 1 ◽  
Author(s):  
Kirsten Nettles ◽  
Cameron Ford ◽  
Paola A. Prada-Tiedemann

The early detection and location of firearm threats is critical to the success of any law enforcement operation to prevent a mass shooting event or illegal transport of weapons. Prevention tactics such as firearm detection canines have been at the front line of security tools to combat this national security threat. Firearm detection canines go through rigorous training regimens to achieve reliability in the detection of firearms as their target odor source. Currently, there is no scientific foundation as to the chemical odor signature emitted from the actual firearm device that could aid in increased and more efficient canine training and performance protocols or a better understanding of the chemistry of firearm-related odorants for better source identification. This study provides a novel method application of solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) as a rapid system for the evaluation of odor profiles from firearm devices (loaded and unloaded). Samples included magazines (n = 30) and firearms (n = 15) acquired from the local law enforcement shooting range. Headspace analysis depicted five frequently occurring compounds across sample matrices including aldehydes such as nonanal, decanal, octanal and hydrocarbons tetradecane and tridecane. Statistical analysis via principal component analysis (PCA) highlighted a preliminary clustering differentiating unloaded firearms from both loaded/unloaded magazines and loaded firearm devices. These results highlight potential odor signature differences associated with different firearm components. The understanding of key odorants above a firearm will have an impact on national security efforts, thereby enhancing training regimens to better prepare canine teams for current threats in our communities.


Marine Drugs ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 169
Author(s):  
Roberto Barone ◽  
Lorenzo De Napoli ◽  
Luciano Mayol ◽  
Marina Paolucci ◽  
Maria Grazia Volpe ◽  
...  

Algae have multiple similarities with fungi, with both belonging to the Thallophyte, a polyphyletic group of non-mobile organisms grouped together on the basis of similar characteristics, but not sharing a common ancestor. The main difference between algae and fungi is noted in their metabolism. In fact, although algae have chlorophyll-bearing thalloids and are autotrophic organisms, fungi lack chlorophyll and are heterotrophic, not able to synthesize their own nutrients. However, our studies have shown that the extremophilic microalga Galderia sulphuraria (GS) can also grow very well in heterotrophic conditions like fungi. This study was carried out using several approaches such as scanning electron microscope (SEM), gas chromatography/mass spectrometry (GC/MS), and infrared spectrophotometry (ATR-FTIR). Results showed that the GS, strain ACUF 064, cultured in autotrophic (AGS) and heterotrophic (HGS) conditions, produced different biomolecules. In particular, when grown in HGS, the algae (i) was 30% larger, with an increase in carbon mass that was 20% greater than AGS; (ii) produced higher quantities of stearic acid, oleic acid, monounsaturated fatty acids (MUFAs), and ergosterol; (iii) produced lower quantities of fatty acid methyl esters (FAMEs) such as methyl palmytate, and methyl linoleate, saturated fatty acids (SFAs), and poyliunsaturated fatty acids (PUFAs). ATR-FTIR and principal component analysis (PCA) statistical analysis confirmed that the macromolecular content of HGS was significantly different from AGS. The ability to produce different macromolecules by changing the trophic conditions may represent an interesting strategy to induce microalgae to produce different biomolecules that can find applications in several fields such as food, feed, nutraceutical, or energy production.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 536 ◽  
Author(s):  
Somchai Rice ◽  
Devin Maurer ◽  
Anne Fennell ◽  
Murlidhar Dharmadhikari ◽  
Jacek Koziel

In this research, we propose a novel concept for a non-destructive evaluation of volatiles emitted from ripening grapes using solid-phase microextraction (SPME). This concept is novel to both the traditional vinifera grapes and the cold-hardy cultivars. Our sample models are cold-hardy varieties in the upper Midwest for which many of the basic multiyear grape flavor and wine style data is needed. Non-destructive sampling included a use of polyvinyl fluoride (PVF) chambers temporarily enclosing and concentrating volatiles emitted by a whole cluster of grapes on a vine and a modified 2 mL glass vial for a vacuum-assisted sampling of volatiles from a single grape berry. We used SPME for either sampling in the field or headspace of crushed grapes in the lab and followed with analyses on gas chromatography-mass spectrometry (GC-MS). We have shown that it is feasible to detect volatile organic compounds (VOCs) emitted in-vivo from single grape berries (39 compounds) and whole clusters (44 compounds). Over 110 VOCs were released to headspace from crushed berries. Spatial (vineyard location) and temporal variations in VOC profiles were observed for all four cultivars. However, these changes were not consistent by growing season, by location, within cultivars, or by ripening stage when analyzed by multivariate analyses such as principal component analysis (PCA) and hierarchical cluster analyses (HCA). Research into aroma compounds present in cold-hardy cultivars is essential to the continued growth of the wine industry in cold climates and diversification of agriculture in the upper Midwestern area of the U.S.


Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 886 ◽  
Author(s):  
Angélica Romero-Medina ◽  
Mirna Estarrón-Espinosa ◽  
José Ramón Verde-Calvo ◽  
Maud Lelièvre-Desmas ◽  
Héctor B. Escalona-Buendía

This study was undertaken to explore how the use of pigmented corn as brewing ingredient influences the sensory profile of craft beers, by using both sensory and chemical analyses. Six pigmented corn and barley beers were brewed and then analysed to obtain their sensory characteristics, volatile composition and non-volatile (alcohol, bitterness, anthocyanins and polyphenol content) composition. ANOVAs, Principal Component Analysis (PCA) and Multiple Factor Analysis (MFA) were used to visualise these data for exploring the differences between beers based on the type of malt and to characterise corn beers considering the relationships between their sensory characteristics and their chemical parameters. The sensory attributes such as fermented fruits, cooked vegetables, tortillas, bread, dried fruits and dried chili characterised beers made 100% with pigmented corn. Over 100 volatiles were identified by head space-solid phase micro-extraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS). Among them, phenols and terpenes were the groups of volatiles that better characterised beers containing corn. The content of anthocyanins in corn beers provide the ‘amber-red-cooper’ colours in beers and may prevent the development of off-aromas and tastes. The use of pigmented corn seems to be a good option to renew the traditional ‘Sendechó’ while preserving some of its sensory attributes.


Sign in / Sign up

Export Citation Format

Share Document