scholarly journals A Comparison of Microfluidic-Jet Spray Drying, Two-Fluid Nozzle Spray Drying, and Freeze-Drying for Co-Encapsulating β-Carotene, Lutein, Zeaxanthin, and Fish Oil

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1522
Author(s):  
Yongchao Zhu ◽  
Yaoyao Peng ◽  
Jingyuan Wen ◽  
Siew Young Quek

Various microencapsulation techniques can result in significant differences in the properties of dried microcapsules. Microencapsulation is an effective approach to improve fish oil properties, including oxidisability and unpleasant flavour. In this study, β-carotene, lutein, zeaxanthin, and fish oil were co-encapsulated by microfluidic-jet spray drying (MFJSD), two-fluid nozzle spray drying (SD), and freeze-drying (FD), respectively. The aim of the current study is to understand the effect of different drying techniques on microcapsule properties. Whey protein isolate (WPI) and octenylsuccinic anhydride (OSA) modified starch were used as wall matrices in this study for encapsulating carotenoids and fish oil due to their strong emulsifying properties. Results showed the MFJSD microcapsules presented uniform particle size and regular morphological characteristics, while the SD and FD microcapsules presented a large distribution of particle size and irregular morphological characteristics. Compared to the SD and FD microcapsules, the MFJSD microcapsules possessed higher microencapsulation efficiency (94.0–95.1%), higher tapped density (0.373–0.652 g/cm3), and higher flowability (the Carr index of 16.0–30.0%). After a 4-week storage, the SD microcapsules showed the lower retention of carotenoids, as well as ω-3 LC-PUFAs than the FD and MFJSD microcapsules. After in vitro digestion trial, the differences in the digestion behaviours of the microcapsules mainly resulted from the different wall materials, but independent of drying methods. This study has provided an alternative way of delivering visual-beneficial compounds via a novel drying method, which is fundamentally essential in both areas of microencapsulation application and functional food development.

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1674
Author(s):  
Zhenzhou Zhu ◽  
Mailing Wu ◽  
Jie Cai ◽  
Shuyi Li ◽  
Krystian Marszałek ◽  
...  

Jerusalem artichoke is an important natural matrix for inulin production. In this experiment, response surface methodology (RSM) was employed to optimize the spray-drying parameters in order to determine the maximal inulin yield. For this study, three independent variables (heating temperature (Tª, 110–120 °C), creep speed (V, 18–22 rpm) and pressure (P, 0.02–0.04 MPa)) were used in the experimental design. Using the Box–Behnken design, the optimal parameters obtained were: drying temperature 114.6 °C, creep speed 20.02 rpm, and pressure: 0.03 MPa. The inulin yield, water content and particle size of inulin obtained by spray-drying and freeze-drying were compared. In this regard, the spray-dried inulin consisted of a white powder having a fine particle size, and the freeze-dried inulin had a pale-yellow fluffy floc. On the other hand, the drying methods had a great influence on the appearance and internal structure of inulin powder, since the spray-dried inulin had a complete and uniform shape and size, whereas the freeze-dried inulin had a flocculated sheet structure. The analysis showed that the spray-drying led to a higher inulin yield, lower water content and better surface structure than freeze-drying.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Sanjay Kumar Singh ◽  
Parameswara Rao Vuddanda ◽  
Sanjay Singh ◽  
Anand Kumar Srivastava

The objective of the present study was to develop self micro emulsifying formulation (SMEF) of valsartan to improve its oral bioavailability. The formulations were screened on the basis of solubility, stability, emulsification efficiency, particle size and zeta potential. The optimized liquid SMEF contains valsartan (20% w/w), Capmul MCM C8 (16% w/w), Tween 80 (42.66% w/w) and PEG 400 (21.33% w/w) as drug, oil, surfactant and co-surfactant, respectively. Further, Liquid SMEF was adsorbed on Aerosol 200 by spray and freeze drying methods in the ratio of 2 : 1 and transformed into free flowing powder. Both the optimized liquid and solid SMEF had the particle size <200 nm with rapid reconstitution properties. Both drying methods are equally capable for producing stable solid SMEF and immediate release of drug inin vitroandin vivoconditions. However, the solid SMEF produced by spray drying method showed high flowability and compressibility. The solid state characterization employing the FTIR, DSC and XRD studies indicated insignificant interaction of drug with lipid and adsorbed excipient. The relative bioavailability of solid SMEF was approximately 1.5 to 3.0 folds higher than marketed formulation and pure drug. Thus, the developed solid SMEF illustrates an alternative delivery of valsartan as compared to existing formulations with improved bioavailability.


2020 ◽  
Vol 20 (6) ◽  
pp. 3598-3603 ◽  
Author(s):  
Yingying Ma ◽  
Jin Gao ◽  
Wankui Jia ◽  
Yangyang Liu ◽  
Lanying Zhang ◽  
...  

Spray-drying and freeze-drying are effective approaches to improve the long-term stability of nanosuspensions. This research explored the effect of spray-drying and freeze-drying techniques on PVP K30-stabilized silybin nanosuspensions. The morphology was observed by scanning electron microscopy (SEM): The spray-dried sample was spherical, and the freeze-dried samples were rodlike with smooth surfaces. The redispersibility was studied via dynamic light scattering (DLS): The size, PDI, and zeta of the spray-dried sample were 133.27 nm, 0.214, and 24.37 mV, respectively; the size, PDI, and zeta of the freeze-dried sample were 298.70 nm, 0.114, and 20.98 mV, respectively. The in vitro dissolution was studied, and the two dry powders showed a significant increase compared to silybin. The two dried powders had better long-term stability than the liquid starting material. Overall, spray-drying and freeze-drying are appropriate drying methods for the preparation of silybin nanosuspensions with better stability and dissolution velocity.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yuqi Pang ◽  
Xu Duan ◽  
Guangyue Ren ◽  
Wenchao Liu

Microencapsulation is widely used to minimize the oxidation of fish oil products. This study compared the effects of different drying methods, for example, spray drying (SD), freeze drying (FD), and spray freeze drying (SFD) on the microencapsulation of fish oil. Spray drying (SD) is the most common method for producing fish oil microcapsules, and it has low operation cost and short processing time, while the product yield and quality are poor. Freeze drying (FD) can be used to produce oil microcapsules with high quality, but it takes long time and high overall cost for drying. Spray freeze drying (SFD) is a new method for the preparation of microcapsules, which combines the SD and FD processes to obtain high quality powder. The yield of powder reached 95.07% along with porous structure by SFD. The stability and slow-release property of SFD products were better than those of SD and FD, which showed that SFD improved product storage stability and potential digestibility.


Author(s):  
Gülsel Yurtdaş Kırımlıoğlu ◽  
Sinan Özer ◽  
Gülay Büyükköroğlu ◽  
Yasemin Yazan

Background: Considering the low ocular bioavailability of conventional formulations used for ocular bacterial infection treatment, there’s a need for designing efficient novel drug delivery systems that may enhance of precorneal retention time and corneal permeability. Aim and Objective: The current research focuses on developing nanosized and non-toxic Eudragit® RL 100 and Kollidon® SR nanoparticles loaded with moxifloxacin hydrochloride (MOX) for its prolonged release to be promising for effective ocular delivery. Methods: In this study, MOX was incorporation was carried out by spray drying method aiming ocular delivery. In vitro characteristics were evaluated in detail with different methods. Results: MOX was successfully incorporated into Eudragit® RL 100 and Kollidon® SR polymeric nanoparticles by spray-drying process. Particle size, zeta potential, entrapment efficiency, particle morphology, thermal, FTIR, XRD and NMR analyses and MOX quantification using HPLC method were carried out to evaluate the nanoparticles prepared. MOX loaded nanoparticles demonstrated nanosized and spherical shape while in vitro release studies demonstrated modified release pattern which followed Korsmeyer-Peppas kinetic model. Following successful incorporation of MOX into the nanoparticles, the formulation (MOX: Eudragit® RL 100, 1:5) (ERL-MOX 2) was selected for further studies by the reason of its better characteristics like cationic zeta potential, smaller particle size, narrow size distribution and more uniform prolonged release pattern. Moreover, ERL-MOX 2 formulation remained stable for 3 months and demonstrated higher cell viability values for MOX. Conclusion: In vitro characterization analyses showed that non-toxic, nano-sized and cationic ERLMOX 2 formulation has the potential of enhancing ocular bioavailability.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2644
Author(s):  
Jan Oszmiański ◽  
Sabina Lachowicz ◽  
Paulina Nowicka ◽  
Paweł Rubiński ◽  
Tomasz Cebulak

The present study aimed to evaluate the effect of Jerusalem artichoke processing methods and drying methods (freeze drying, sublimation drying, vacuum drying) on the basic physicochemical parameters, profiles and contents of sugars and polyphenolic compounds, and health-promoting properties (antioxidant activity, inhibition of the activities of α-amylase, α-glucosidase, and pancreatic lipase) of the produced purée. A total of 25 polyphenolic compounds belonging to hydroxycinnamic phenolic acids (LC-PDA-MS-QTof) were detected in Jerusalem artichoke purée. Their average content in the raw material was at 820 mg/100 g dm (UPLC-PDA-FL) and was 2.7 times higher than in the cooked material. The chemical composition and the health-promoting value of the purées were affected by the drying method, with the most beneficial values of the evaluated parameters obtained upon freeze drying. Vacuum drying could offer an alternative to freeze drying, as both methods ensured relatively comparable values of the assessed parameters.


Sign in / Sign up

Export Citation Format

Share Document