scholarly journals Exploration of the Microstructure and Rheological Properties of Sodium Alginate-Pectin-Whey Protein Isolate Stabilized Β-Carotene Emulsions: To Improve Stability and Achieve Gastrointestinal Sustained Release

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1991
Author(s):  
Haoxin Ye ◽  
Tingshuai Chen ◽  
Min Huang ◽  
Gerui Ren ◽  
Qunfang Lei ◽  
...  

Sodium alginate (SA)-pectin (PEC)-whey protein isolate (WPI) complexes were used as an emulsifier to prepare β-carotene emulsions, and the encapsulation efficiency for β-carotene was up to 93.08%. The confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) images showed that the SA-PEC-WPI emulsion had a compact network structure. The SA-PEC-WPI emulsion exhibited shear-thinning behavior and was in a semi-dilute or weak network state. The SA-PEC-WPI stabilized β-carotene emulsion had better thermal, physical and chemical stability. A small amount of β-carotene (19.46 ± 1.33%) was released from SA-PEC-WPI stabilized β-carotene emulsion in simulated gastric digestion, while a large amount of β-carotene (90.33 ± 1.58%) was released in simulated intestinal digestion. Fourier transform infrared (FTIR) experiments indicated that the formation of SA-PEC-WPI stabilized β-carotene emulsion was attributed to the electrostatic and hydrogen bonding interactions between WPI and SA or PEC, and the hydrophobic interactions between β-carotene and WPI. These results can facilitate the design of polysaccharide-protein stabilized emulsions with high encapsulation efficiency and stability for nutraceutical delivery in food and supplement products.

2014 ◽  
Vol 35 ◽  
pp. 129-136 ◽  
Author(s):  
Silvana A. Fioramonti ◽  
Adrián A. Perez ◽  
E. Elena Aríngoli ◽  
Amelia C. Rubiolo ◽  
Liliana G. Santiago

2019 ◽  
Vol 10 (10) ◽  
pp. 6829-6839 ◽  
Author(s):  
Qi Wang ◽  
Wanrong Li ◽  
Pei Liu ◽  
Zhongze Hu ◽  
Xinguang Qin ◽  
...  

A glycated whey protein isolate–epigallocatechin gallate (EGCG) nanocomplex-stabilized emulsion was used to encapsulate β-carotene.


2019 ◽  
Vol 7 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Abhijit Kar ◽  
Dipendra Kumar Mahato ◽  
Avinash Singh Patel ◽  
Lalit M. Bal

The anthocyanin pigment of black carrot juice was used as a core material for microencapsulation by spray dryer at 150°C using the mixed carrier material viz. whey protein isolate (WPI), jackfruit seed starch (JSS) and NBRE-15. The ratio of WPI: JSS ranged from 1:1 to 1:3 and NBRE-15 from 0.1-0.3% were taken to optimize the carrier material for encapsulation taking anthocyanin content, antioxidant activity and encapsulation efficiency as responses using Box-Behnken Design (BBD) by Response Surface Methodology (RSM). The anthocyanin (core material) was encapsulated at the optimized condition of the carrier material having five times the jackfruit seed starch as the whey protein isolate (5:1) and 0.3% NBRE-15 as an emulsifier. The optimized powder was found to have 2766.61 mg/100g (dry matter) of anthocyanin content, 290.56 µmolTrolox/g (dry matter) antioxidant activity with an encapsulation efficiency of 77.12% at 93.59% of desirability. Optimized powder retained the color value of 30.61, 29.39 and 0.03 for L*, a* and b*. Mean particle size distribution for the optimized encapsulated anthocyanin powder was 52.36 µm. Scanning Electron Microscope (SEM) images revealed the smooth surface characteristic of the optimized powder with slightly oval to globular in shape.


2020 ◽  
Vol 21 (7) ◽  
pp. 2486 ◽  
Author(s):  
Andrey A. Tyuftin ◽  
Lizhe Wang ◽  
Mark A.E. Auty ◽  
Joe P. Kerry

The objective of this study was to assess the ability of producing laminated edible films manufactured using the following proteins; gelatin (G), whey protein isolate (WPI) and polysaccharide sodium alginate (SA), and to evaluate their physical properties. Additionally, films’ preparation employing these ingredients was optimized through the addition of corn oil (O). Overall, 8-types of laminated films (G-SA, G-WPI, SA-WPI, SA-G-WPI, GO-SAO, GO-WPIO, SAO-WPIO and SAO-GO-WPIO) were developed in this study. The properties of the prepared films were characterized through the measurement of tensile strength (TS), elongation at break point (EB), puncture resistance (PR), tear strength (TT), water vapour permeability (WVP) and oxygen permeability (OP). The microstructure of cross-sections of laminated films was investigated by scanning electron microscopy (SEM). Mechanical properties of films were dramatically enhanced through the addition of film layers. GO-SAO laminate showed the best barrier properties to water vapour (22.6 ± 4.04 g mm/kPa d m2) and oxygen (18.2 ± 8.70 cm3 mm/kPa d m2). SAO-GO-WPIO laminate film was the strongest of all laminated films tested, having the highest TS of 55.77 MPa, PR of 41.36 N and TT of 27.32 N. SA-G-WPI film possessed the highest elasticity with an EB value of 17.4%.


2017 ◽  
Vol 8 (1) ◽  
pp. 415-423 ◽  
Author(s):  
Duoxia Xu ◽  
Yameng Qi ◽  
Xu Wang ◽  
Xin Li ◽  
Shaojia Wang ◽  
...  

The impact of flaxseed gum (FG) on the microrheological properties and physicochemical stability of whey protein isolate (WPI) stabilized β-carotene emulsions at pH 3.0 was studied.


Sign in / Sign up

Export Citation Format

Share Document