scholarly journals Antifungal Efficacy of Redox-Active Natamycin against Some Foodborne Fungi—Comparison with Aspergillus fumigatus

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2073
Author(s):  
Jong Kim ◽  
Christina Tam ◽  
Kathleen Chan ◽  
Luisa Cheng ◽  
Kirkwood Land ◽  
...  

The fungal antioxidant system is one of the targets of the redox-active polyene antifungal drugs, including amphotericin B (AMB), nystatin (NYS), and natamycin (NAT). Besides medical applications, NAT has been used in industry for preserving foods and crops. In this study, we investigated two parameters (pH and food ingredients) affecting NAT efficacy. In the human pathogen, Aspergillus fumigatus, NAT (2 to 16 μg mL−1) exerted higher activity at pH 5.6 than at pH 3.5 on a defined medium. In contrast, NAT exhibited higher activity at pH 3.5 than at pH 5.6 against foodborne fungal contaminants, Aspergillus flavus, Aspergillus parasiticus, and Penicillium expansum, with P. expansum being the most sensitive. In commercial food matrices (10 organic fruit juices), food ingredients differentially affected NAT antifungal efficacy. Noteworthily, NAT overcame tolerance of the A. fumigatus signaling mutants to the fungicide fludioxonil and exerted antifungal synergism with the secondary metabolite, kojic acid (KA). Altogether, NAT exhibited better antifungal activity at acidic pH against foodborne fungi; however, the ingredients from commercial food matrices presented greater impact on NAT efficacy compared to pH values. Comprehensive determination of parameters affecting NAT efficacy and improved food formulation will promote sustainable food/crop production, food safety, and public health.

mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 813
Author(s):  
Chukwuemeka Samson Ahamefule ◽  
Blessing C. Ezeuduji ◽  
James C. Ogbonna ◽  
Anene N. Moneke ◽  
Anthony C. Ike ◽  
...  

With the mortality rate of invasive aspergillosis caused by Aspergillus fumigatus reaching almost 100% among some groups of patients, and with the rapidly increasing resistance of A. fumigatus to available antifungal drugs, new antifungal agents have never been more desirable than now. Numerous bioactive compounds were isolated and characterized from marine resources. However, only a few exhibited a potent activity against A. fumigatus when compared to the multitude that did against some other pathogens. Here, we review the marine bioactive compounds that display a bioactivity against A. fumigatus. The challenges hampering the discovery of antifungal agents from this rich habitat are also critically analyzed. Further, we propose strategies that could speed up an efficient discovery and broaden the dimensions of screening in order to obtain promising in vivo antifungal agents with new modes of action.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Adriana Oliveira Manfiolli ◽  
Filipe Silva Siqueira ◽  
Thaila Fernanda dos Reis ◽  
Patrick Van Dijck ◽  
Sanne Schrevens ◽  
...  

ABSTRACT The pathogenic fungus Aspergillus fumigatus is able to adapt to extremely variable environmental conditions. The A. fumigatus genome contains four genes coding for mitogen-activated protein kinases (MAPKs), which are important regulatory knots involved in diverse cellular responses. From a clinical perspective, MAPK activity has been connected to salvage pathways, which can determine the failure of effective treatment of invasive mycoses using antifungal drugs. Here, we report the characterization of the Saccharomyces cerevisiae Fus3 ortholog in A. fumigatus, designated MpkB. We demonstrate that MpkB is important for conidiation and that its deletion induces a copious increase of dihydroxynaphthalene (DHN)-melanin production. Simultaneous deletion of mpkB and mpkA, the latter related to maintenance of the cell wall integrity, normalized DHN-melanin production. Localization studies revealed that MpkB translocates into the nuclei when A. fumigatus germlings are exposed to caspofungin stress, and this is dependent on the cross-talk interaction with MpkA. Additionally, DHN-melanin formation was also increased after deletion of genes coding for the Gα protein GpaA and for the G protein-coupled receptor GprM. Yeast two-hybrid and coimmunoprecipitation assays confirmed that GpaA and GprM interact, suggesting their role in the MpkB signaling cascade. IMPORTANCE Aspergillus fumigatus is the most important airborne human pathogenic fungus, causing thousands of deaths per year. Its lethality is due to late and often inaccurate diagnosis and the lack of efficient therapeutics. The failure of efficient prophylaxis and therapy is based on the ability of this pathogen to activate numerous salvage pathways that are capable of overcoming the different drug-derived stresses. A major role in the protection of A. fumigatus is played by melanins. Melanins are cell wall-associated macromolecules classified as virulence determinants. The understanding of the various signaling pathways acting in this organism can be used to elucidate the mechanism beyond melanin production and help to identify ideal drug targets.


2020 ◽  
Vol 209 (5) ◽  
pp. 579-592
Author(s):  
Lukas Page ◽  
Chris D. Lauruschkat ◽  
Johanna Helm ◽  
Philipp Weis ◽  
Maria Lazariotou ◽  
...  

2006 ◽  
Vol 5 (10) ◽  
pp. 1705-1712 ◽  
Author(s):  
S. Arunmozhi Balajee ◽  
David Nickle ◽  
Janos Varga ◽  
Kieren A. Marr

ABSTRACT Aspergillus fumigatus has been understood to be the most common cause of invasive aspergillosis (IA) in all epidemiological surveys. However, recent studies have uncovered a large degree of genetic heterogeneity between isolates morphologically identified as A. fumigatus, leading to the description of a new species, Aspergillus lentulus. Here, we examined the genetic diversity of clinical isolates identified as A. fumigatus using restriction enzyme polymorphism analysis and sequence-based identification. Analysis of 50 clinical isolates from geographically diverse locations recorded the presence of at least three distinct species: A. lentulus, Aspergillus udagawae, and A. fumigatus. In vitro, A. lentulus isolates demonstrated decreased susceptibility to antifungal drugs currently used for IA, including amphotericin B, voriconazole, and caspofungin; A. udagawae isolates demonstrated decreased in vitro susceptibility to amphotericin B. Results of the present study demonstrate that current phenotypic methods to identify fungi do not differentiate between genetically distinct species in the A. fumigatus group. Differential antifungal susceptibilities of these species may account for some of the reported poor outcomes of therapy in clinical studies.


TECHNOLOGY ◽  
2016 ◽  
Vol 04 (03) ◽  
pp. 194-200 ◽  
Author(s):  
Evangelyn C. Alocilja ◽  
Parul Jain ◽  
Kasey Pryg

An antibody-based sensor (immunosensor) has been developed that features an all-in-one extraction and detection of the enteric pathogen E. coli O57 : H7 using the same redox-active polyaniline-coated iron oxide nanoparticles (PIONs). Capture efficiency for E. coli O57 : H7 is shown to be 81–99% in various food matrices with varying properties. The immunosensor's detection range is 100 to 105 CFU/mL with a detection limit of 5 CFU. Furthermore, magnetic separation is showing great promise as an alternative to existing conventional sample processing systems. Given the bacteria's low contamination level in food and water, this biosensor technology has great potential in monitoring enteric microbial contaminants in the food supply chain where simplicity, sensitivity, and ease of use are important.


2012 ◽  
Vol 57 (3) ◽  
pp. 1275-1282 ◽  
Author(s):  
Francesca Bugli ◽  
Brunella Posteraro ◽  
Massimiliano Papi ◽  
Riccardo Torelli ◽  
Alessandro Maiorana ◽  
...  

ABSTRACTAspergillus fumigatusbiofilms represent a problematic clinical entity, especially because of their recalcitrance to antifungal drugs, which poses a number of therapeutic implications for invasive aspergillosis, the most difficult-to-treatAspergillus-related disease. While the antibiofilm activities of amphotericin B (AMB) deoxycholate and its lipid formulations (e.g., liposomal AMB [LAMB]) are well documented, the effectiveness of these drugs in combination with nonantifungal agents is poorly understood. In the present study,in vitrointeractions between polyene antifungals (AMB and LAMB) and alginate lyase (AlgL), an enzyme degrading the polysaccharides produced as extracellular polymeric substances (EPSs) within the biofilm matrix, againstA. fumigatusbiofilms were evaluated by using the checkerboard microdilution and the time-kill assays. Furthermore, atomic force microscopy (AFM) was used to image and quantify the effects of AlgL-antifungal combinations on biofilm-growing hyphal cells. On the basis of fractional inhibitory concentration index values, synergy was found between both AMB formulations and AlgL, and this finding was also confirmed by the time-kill test. Finally, AFM analysis showed that whenA. fumigatusbiofilms were treated with AlgL or polyene alone, as well as with their combination, both a reduction of hyphal thicknesses and an increase of adhesive forces were observed compared to the findings for untreated controls, probably owing to the different action by the enzyme or the antifungal compounds. Interestingly, marked physical changes were noticed inA. fumigatusbiofilms exposed to the AlgL-antifungal combinations compared with the physical characteristics detected after exposure to the antifungals alone, indicating that AlgL may enhance the antibiofilm activity of both AMB and LAMB, perhaps by disrupting the hypha-embedding EPSs and thus facilitating the drugs to reach biofilm cells. Taken together, our results suggest that a combination of AlgL and a polyene antifungal may prove to be a new therapeutic strategy for invasive aspergillosis, while reinforcing the EPS as a valuable antibiofilm drug target.


2012 ◽  
Vol 11 (9) ◽  
pp. 1167-1177 ◽  
Author(s):  
Sanjoy Paul ◽  
J. Stacey Klutts ◽  
W. Scott Moye-Rowley

ABSTRACTThe filamentous fungusAspergillus fumigatusis an important opportunistic pathogen that can cause high mortality levels in susceptible patient populations. The increasing dependence on antifungal drugs to controlA. fumigatushas led to the inevitable acquisition of drug-resistant forms of this pathogen. In other fungal pathogens, drug resistance is often associated with an increase in transcription of genes such as ATP-binding cassette (ABC) transporters that directly lead to tolerance to commonly employed antifungal drugs. InA. fumigatus, tolerance to azole drugs (the major class of antifungal) is often associated with changes in the sequence of the azole target enzyme as well as changes in the transcription level of this gene. The target gene for azole drugs inA. fumigatusis referred to ascyp51A. In order to dissect transcription ofcyp51Atranscription and other genes of interest, we constructed a set of firefly luciferase reporter genes designed for use inA. fumigatus. These reporter genes can either replicate autonomously or be targeted to thepyrGlocus, generating an easily assayable uracil auxotrophy. We fused eight differentA. fumigatuspromoters to luciferase. Faithful behaviors of these reporter gene fusions compared to their chromosomal equivalents were evaluated by 5′ rapid amplification of cDNA ends (RACE) and quantitative reverse transcription-PCR (qRT-PCR) analysis. We used this reporter gene system to study stress-regulated transcription of a Hsp70-encoding gene, map an important promoter element in thecyp51Agene, and correct an annotation error in the actin gene. We anticipate that this luciferase reporter gene system will be broadly applicable in analyses of gene expression inA. fumigatus.


2012 ◽  
Vol 56 (5) ◽  
pp. 2524-2529 ◽  
Author(s):  
J. Meletiadis ◽  
E. Mavridou ◽  
W. J. G. Melchers ◽  
J. W. Mouton ◽  
P. E. Verweij

ABSTRACTEpidemiological cutoff values (ECV) are commonly used to separate wild-type isolates from isolates with reduced susceptibility to antifungal drugs, thus setting the foundation for establishing clinical breakpoints forAspergillus fumigatus. However, ECVs are usually determined by eye, a method which lacks objectivity, sensitivity, and statistical robustness and may be difficult, in particular, for extended and complex MIC distributions. We therefore describe and evaluate a statistical method of MIC distribution analysis for posaconazole, itraconazole, and voriconazole for 296A. fumigatusisolates utilizing nonlinear regression analysis, the normal plot technique, and recursive partitioning analysis incorporatingcyp51Asequence data. MICs were determined by using the CLSI M38–A2 protocol (CLSI, CLSI document M38–A2, 2008) after incubation of the isolates for 48 h and were transformed into log2MICs. We found a wide distribution of MICs of all azoles, some ranging from 0.02 to 128 mg/liter, with median MICs of 32 mg/liter for itraconazole, 4 mg/liter for voriconazole, and 0.5 mg/liter for posaconazole. Of the isolates, 65% (192 of 296) had mutations in thecyp51Agene, and the majority of the mutants (90%) harbored tandem repeats in the promoter region combined with mutations in thecyp51Acoding region. MIC distributions deviated significantly from normal distribution (D'Agostino-Pearson omnibus normality testPvalue, <0.001), and they were better described with a model of the sum of two Gaussian distributions (R2, 0.91 to 0.96). The normal plot technique revealed a mixture of two populations of MICs separated by MICs of 1 mg/liter for itraconazole, 1 mg/liter for voriconazole, and 0.125 mg/liter for posaconazole. Recursive partitioning analysis confirmed these ECVs, since the proportions of isolates harboringcyp51Amutations associated with azole resistance were less than 20%, 20 to 30%, and >70% when the MICs were lower than, equal to, and higher than the above-mentioned ECVs, respectively.


2021 ◽  
Author(s):  
Johanna Rhodes ◽  
Alireza Abdolrasouli ◽  
Katie Dunne ◽  
Thomas R. Sewell ◽  
Yuyi Zhang ◽  
...  

Infections caused by opportunistic fungal pathogens are increasingly resistant to first-line azole antifungal drugs. However, despite its clinical importance, little is known about the extent to which susceptible patients acquire infection from drug resistant genotypes in the environment. Here, we present a population genomic analysis of the mould Aspergillus fumigatus from across the United Kingdom and Republic of Ireland. First, we show occurrences where azole resistant isolates of near identical genotypes were obtained from both environmental and clinical sources, indicating with high confidence the infection of patients with resistant isolates transmitted from the environment. Second, we find that the fungus is structured into two clades ('A' and 'B') with little interclade recombination and the majority of environmental azole resistance genetically clustered inside Clade A. Genome-scans show the impact of selective sweeps across multiple regions of the genome. These signatures of positive selection are seen in regions containing canonical genes encoding fungicide resistance in the ergosterol biosynthetic pathway, whilst other regions under selection have no defined function. Phenotyping identified genes in these regions that could act as modifiers of resistance showing the utility of reverse genetic approaches to dissect the complex genomic architecture of fungal drug resistance. Understanding the environmental drivers and genetic basis of evolving fungal drug resistance needs urgent attention, especially in light of increasing numbers of patients with severe viral respiratory tract infections who are susceptible to opportunistic fungal superinfections.


Sign in / Sign up

Export Citation Format

Share Document