scholarly journals Probiotic Properties, Prebiotic Fermentability, and GABA-Producing Capacity of Microorganisms Isolated from Mexican Milk Kefir Grains: A Clustering Evaluation for Functional Dairy Food Applications

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2275
Author(s):  
Alejandra Hurtado-Romero ◽  
Mariano Del Toro-Barbosa ◽  
Misael Sebastián Gradilla-Hernández ◽  
Luis Eduardo Garcia-Amezquita ◽  
Tomás García-Cayuela

Isolation and functional characterization of microorganisms are relevant steps for generating starter cultures with functional properties, and more recently, those related to improving mental health. Milk kefir grains have been recently investigated as a source of health-related strains. This study focused on the evaluation of microorganisms from artisanal Mexican milk kefir grains regarding probiotic properties, in vitro fermentability with commercial prebiotics (lactulose, inulin, and citrus pectin), and γ-aminobutyric acid (GABA)-producing capacity. Microorganisms were identified belonging to genera Lactococcus, Lactobacillus, Leuconostoc, and Kluyveromyces. The probiotic properties were assessed by aggregation abilities, antimicrobial activity, antibiotic susceptibility, and resistance to in vitro gastrointestinal digestion, showing a good performance compared with commercial probiotics. Most of isolates maintained a concentration above 6 log colony forming units/mL after the intestinal phase. Specific isolates of Kluyveromyces (BIOTEC009 and BIOTEC010), Leuconostoc (BIOTEC011 and BIOTEC012), and Lactobacillus (BIOTEC014 and BIOTEC15) showed a high fermentability in media supplemented with commercial prebiotics. The capacity to produce GABA was classified as medium for L. lactis BIOTEC006, BIOTEC007, and BIOTEC008; K. lactis BIOTEC009; L. pseudomesenteroides BIOTEC012; and L. kefiri BIOTEC014, and comparable to that obtained for commercial probiotics. Finally, a multivariate approach was performed, allowing the grouping of 2–5 clusters of microorganisms that could be further considered new promising cultures for functional dairy food applications.

2018 ◽  
Vol 6 (4) ◽  
pp. 121 ◽  
Author(s):  
Ioanna Mantzourani ◽  
Antonia Terpou ◽  
Athanasios Alexopoulos ◽  
Pelagia Chondrou ◽  
Alex Galanis ◽  
...  

In the present study 38 lactic acid bacteria strains were isolated from kefir grains and were monitored regarding probiotic properties in a series of established in vitro tests, including resistance to low pH, resistance to pepsin and pancreatin, and tolerance to bile salts, as well as susceptibility against common antibiotics. Among them, the strain SP3 displayed potential probiotic properties. Multiplex PCR analysis indicated that the novel strain belongs to the paracasei species. Likewise, the novel strain (Lactobacillus paracasei SP3) was applied as a starter culture for Feta-type cheese production. Feta-type cheese production resulted in significantly higher acidity; lower pH; reduced counts of coliforms, yeasts and fungi; and improved quality characteristics compared with cheese samples produced with no starter culture. Finally, it is highlighted that the application of the novel strain led to Feta-type cheese production with improved overall quality and sensory characteristics.


2019 ◽  
Vol 71 (2) ◽  
pp. 647-657 ◽  
Author(s):  
J.G. Silva ◽  
R.D. Castro ◽  
F.M. Sant’Anna ◽  
R.M. Barquete ◽  
L.G. Oliveira ◽  
...  

ABSTRACT Minas artisanal cheese is made from endogenous starter cultures, including lactic acid bacteria (LAB). Some LAB may possess probiotic potential. Thus, this study aimed to evaluate the in vitro probiotic properties of lactobacilli isolated from Minas artisanal cheeses produced in Minas Gerais. Ten samples of lactobacilli, formerly isolated from those cheeses, were submitted to the following assays: antimicrobial susceptibility, tolerance to artificial gastric juice and biliary salts, production of hydrogen peroxide and antagonism against pathogenic and non-pathogenic micro-organisms. Only L. plantarum (C0) was sensitive to all tested antimicrobials, while the other LAB samples were resistant to at least one drug. Six samples were tolerant to artificial gastric juice, and L. brevis (A6) even grew in that medium. Three samples were tolerant to biliary salts. Only L. brevis (E35) produced hydrogen peroxide. Difference (P< 0.05) was observed among the means of inhibition haloes of lactobacilli against Enterococcus faecalis ATCC 19433 and Lactobacillus plantarum C24 in spot-on-the-lawn assay. All samples of lactobacilli inhibited Escherichia coli ATCC 25922, Salmonella enterica var. Typhimurium ATCC 14028 in co-culture antagonism test (P< 0.0001). Most lactobacilli samples showed in vitro probiotic potential. From the tested samples, L. brevis (A6) presented the best results considering all in vitro probiotic tests.


2020 ◽  
Vol 44 (5) ◽  
pp. 315-322
Author(s):  
Liz Mariana Hernández-Bautista ◽  
Raúl Márquez-Preciado ◽  
Marine Ortiz-Magdaleno ◽  
Amaury Pozos-Guillén ◽  
Saray Aranda-Romo ◽  
...  

Purpose: The objective was to evaluate the antagonistic effect of Lactobacillus and Bifidobacterium recovered from five commercial probiotics on the growth of C. albicans. Study design: The Lactobacillus and Bifidobacterium strains of five commercial probiotics were recovered and grown: Probio Hp+®, ProBiseis®, Lactipan®, Liolactil®, and Lacteol Fort®; 50 mg of each was hydrated and grown in Lactobacilli MRS (De Man, Rogosa and Sharpe) broth and incubated at 37°C with stirring (120 RPM) for 24 hours. Serial dilutions of 10−1 to 10−7 were made and viability was verified and quantified. For the antagonism tests, a suspension/inoculum of Lactobacillus strains recovered from each commercial preparation (4–30 × 109) and C. albicans ATCC 90028 (1.5–8 × 108) was prepared in MRS broth and incubated for 48 hours at 36°C, then plated on Dextrose Sabouraud Agar with Chloramphenicol and Rogosa Agar and the colony-forming units (CFU) were quantified. Additionally, viability was evaluated using the LIVE/DEAD® Yeast and Bacterial Viability kit. Results: The probiotic that produced the highest acidity of the medium was Lactipan®, followed by Probiseis® and Liolactil®, while Probio Hp+® showed the least change. Probiseis® was determined to have the highest growth of probiotic bacteria and the highest inhibition on C. albicans, followed by Lactipan®; Liolactil® and ProbioHp+® showed the least effect. In fluorescence tests, ProBiseis® showed the best effect, followed by Liolactil® and Lactipan®; Probio Hp+® had less of an effect. Conclusions: Two commercial products (ProBiseis and Lactipan) whose formulations have L. acidophilus, L. casei, L. rhamnosus, L. plantarum, B. infantis, and S. thermophilus have a greater inhibitory effect on C. albicans ATCC 90028


2017 ◽  
Vol 10 (4) ◽  
pp. 309-318 ◽  
Author(s):  
P. Dawlal ◽  
C. Brabet ◽  
M.S. Thantsha ◽  
E.M. Buys

Maize, which contributes to a large portion of the African diet and serves as the base substrate for many fermented cereal products, has been reported to be contaminated with fumonisins. This study aimed to evaluate the in vitro ability of predominant lactic acid bacteria (LAB) in African traditional fermented maize based foods (ogi and mahewu) to bind fumonisin B1 (FB1) and B2 (FB2), as well as the stability of the complex at different pH and temperatures, in particular observed during ogi fermentation and under its storage conditions (time, temperature). The percentage of bound fumonisins was calculated after analysing the level of fumonisins not bound to LAB after a certain incubation time, by HPLC. The results revealed the ability of all tested LAB strains to bind both fumonisins, with binding efficiencies varying between strains and higher for FB2. Binding of fumonisins increased with a decrease in pH from 6 to 4 (observed during the ogi fermentation process) and from 4 to 2 (acidic pH in the stomach), and an increase in temperature (from 30 to 37 °C). The percentage of FB1 and FB2 bound to LAB at pH 4 decreased after 6 days of storage at 30 °C for all LAB strains, except for Lactobacillus plantarum (R1096) for which it increased. Lactobacillus species (L. plantarum and Lactobacillus delbrueckii) were the most efficient in binding FB1 and FB2, whereas Pediococcus sp. was less efficient. Therefore, the Lactobacillus strains tested in this study can be recommended as potential starter cultures for African traditional fermented maize based foods having detoxifying and probiotic properties.


2021 ◽  
Vol 22 (18) ◽  
pp. 10004
Author(s):  
Rubén Agregán-Pérez ◽  
Elisa Alonso-González ◽  
Juan Carlos Mejuto ◽  
Nelson Pérez-Guerra

Nowadays, probiotics have been proposed for substituting antibiotics in animal feed since the European Union banned the latter compounds in 2006 to avoid serious side effects on human health. Therefore, this work aimed to produce a probiotic product for use in animal feed by fed-batch fermentation of whey with a combination of kefir grains, AGK1, and the fermented whole milk used to activate these kefir grains. The probiotic culture obtained was characterized by high levels of biomass (8.03 g/L), total viability (3.6 × 108 CFU/mL) and antibacterial activity (28.26 Activity Units/mL). Some probiotic properties of the probiotic culture were investigated in vitro, including its survival at low pH values, under simulated gastrointestinal conditions, after freezing in skim milk at −20 °C, and in the commercial feed during storage at room temperature. The viable cells of lactic and acetic acid bacteria and yeasts exhibited higher tolerance to acidic pH and simulated gastrointestinal conditions when the cells were protected with skim milk and piglet feed, compared with washed cells. The results indicated the feasibility of producing a probiotic product at a low cost with a potential application in animal feed.


Author(s):  
Vania Patrone ◽  
Tahani Al-Surrayai ◽  
Francesco Romaniello ◽  
Alessandra Fontana ◽  
Giovanni Milani ◽  
...  

Abstract Probiotics represent a possible strategy for controlling intestinal infections in livestock. Members of the Weissella genus are increasingly being studied for health-related applications in animals and humans. Here we investigated the functional properties of two Weissella cibaria strains isolated from cows reared in Kuwait breeding facilities by combining phenotypic with genomic analyses. W. cibaria SP7 and SP19 exhibited good growth in vitro under acidic conditions and in the presence of bile salts compared to the reference probiotic Lacticaseibacillus (formerly Lactobacillus) rhamnosus GG. Both strains were able to adhere to Caco-2 and HT-29 cell lines, as well as to mucin. The cell-free supernatants of the two isolates exhibited inhibitory activity towards Escherichia coli ATCC 25,922 and Salmonella enterica UC3605, which was ultimately due to the low pH of supernatants. W. cibaria SP19 showed a co-aggregation ability similar to that of L. rhamnosus GG when incubated with S. enterica. Whole genome sequencing and analysis revealed that both strains harbored several genes involved in carbohydrate metabolism and general stress responses, indicating bacterial adaptation to the gastrointestinal environment. We also detected genes involved in the adhesion to host epithelial cells or extracellular matrix. No evidence of acquired antibiotic resistance or hemolytic activity was found in either strain. These findings shed light on the potential of W. cibaria for probiotic use in livestock and on the mechanisms underlying host-microbe interaction in the gut. W. cibaria` strain SP19 exhibited the best combination of in vitro probiotic properties and genetic markers, and is a promising candidate for further investigation.


Author(s):  
Rubén Agregán-Pérez ◽  
Elisa Alonso-González ◽  
Juan Carlos Mejuto ◽  
Nelson Pérez-Guerra

Nowadays, probiotics has been proposed for substituting antibiotics in animal feed, since the European Union (EU) banned the latter compounds in 2006 to avoid their serious side effects on human health. Therefore, this work aimed to produce a probiotic product by fed-fermentation of whey with kefir grains for use in animal feed. The whey was fermented with a combination of kefir grains AGK1 and the free biomass present in whole milk fermented milk used to activate these kefir grains. The probiotic culture obtained was characterized with high levels of biomass, total viability and antibacterial activity. Some probiotic properties of the probiotic culture were investigated in vitro, including its survival at low pH values, under simulated gastrointestinal conditions, after freezing in skim milk at &minus; 20 &ordm;C, and in the commercial feed during storage at room temperature. The viable cells of lactic and acetic acid bacteria and yeasts exhibited higher tolerance to acidic pH and simulated gastrointestinal conditions when the cells were protected with skim milk and piglet feed, compared with washed cells. The results indicated the feasibility of producing a probiotic product at a low cost with a potential application in animal feed.


2019 ◽  
Vol 476 (24) ◽  
pp. 3835-3847 ◽  
Author(s):  
Aliyath Susmitha ◽  
Kesavan Madhavan Nampoothiri ◽  
Harsha Bajaj

Most Gram-positive bacteria contain a membrane-bound transpeptidase known as sortase which covalently incorporates the surface proteins on to the cell wall. The sortase-displayed protein structures are involved in cell attachment, nutrient uptake and aerial hyphae formation. Among the six classes of sortase (A–F), sortase A of S. aureus is the well-characterized housekeeping enzyme considered as an ideal drug target and a valuable biochemical reagent for protein engineering. Similar to SrtA, class E sortase in GC rich bacteria plays a housekeeping role which is not studied extensively. However, C. glutamicum ATCC 13032, an industrially important organism known for amino acid production, carries a single putative sortase (NCgl2838) gene but neither in vitro peptide cleavage activity nor biochemical characterizations have been investigated. Here, we identified that the gene is having a sortase activity and analyzed its structural similarity with Cd-SrtF. The purified enzyme showed a greater affinity toward LAXTG substrate with a calculated KM of 12 ± 1 µM, one of the highest affinities reported for this class of enzyme. Moreover, site-directed mutation studies were carried to ascertain the structure functional relationship of Cg-SrtE and all these are new findings which will enable us to perceive exciting protein engineering applications with this class of enzyme from a non-pathogenic microbe.


2020 ◽  
Vol 13 (11) ◽  
pp. 1
Author(s):  
A. R. B. Zanco ◽  
A. Ferreira ◽  
G. C. M. Berber ◽  
E. N. Gonzaga ◽  
D. C. C. Sabino

The different integrated production systems can directly interfere with its bacterial community. The present study aimed to assess density, bacterial diversity and the influence of dry and rainy season in different integrated and an exclusive production system. The fallow and a native forest area was assessed to. Samples were collected in 2012 March and September. The isolation were carried out into Petri dishes containing DYGS medium. The number of colony forming units (CFU) was counted after 48 hours and. The bacterial density ranged between 106 and 107 CFU g-1 soil. The crop system affected the dynamics of the bacterial community only in the rainy season. The rainy season showed greater density of total bacteria when compared to the dry period regardless of the cropping system. The dendrograms with 80 % similarity showed thirteen and fourteen groups in the rainy and dry seasons. Isolates with the capacity to solubilize phosphate in vitro were obtained from all areas in the two seasons, but this feature has been prevalent in bacteria isolated during the rainy season


Author(s):  
Jogendra Singh Nim ◽  
Mohit Yadav ◽  
Lalit Kumar Gautam ◽  
Chaitali Ghosh ◽  
Shakti Sahi ◽  
...  

Background: Xenorhabdus nematophila maintains species-specific mutual interaction with nematodes of Steinernema genus. Type II Toxin Antitoxin (TA) systems, the mazEF TA system controls stress and programmed cell death in bacteria. Objective: This study elucidates the functional characterization of Xn-mazEF, a mazEF homolog in X. nematophila by computational and in vitro approaches. Methods: 3 D- structural models for Xn-MazE toxin and Xn-MazF antitoxin were generated, validated and characterized for protein - RNA interaction analysis. Further biological and cellular functions of Xn-MazF toxin were also predicted. Molecular dynamics simulations of 50ns for Xn-MazF toxin complexed with nucleic acid units (DU, RU, RC, and RU) were performed. The MazF toxin and complete MazEF operon were endogenously expressed and monitored for the killing of Escherichia coli host cells under arabinose induced tightly regulated system. Results: Upon induction, E. coli expressing toxin showed rapid killing within four hours and attained up to 65% growth inhibition, while the expression of the entire operon did not show significant killing. The observation suggests that the Xn-mazEF TA system control transcriptional regulation in X. nematophila and helps to manage stress or cause toxicity leading to programmed death of cells. Conclusion: The study provides insights into structural and functional features of novel toxin, XnMazF and provides an initial inference on control of X. nematophila growth regulated by TA systems.


Sign in / Sign up

Export Citation Format

Share Document