scholarly journals Impact of Enzymatic Hydrolysis and Microfluidization on the Techno-Functionality of Oat Bran in Suspension and Acid Milk Gel Models

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Natalia Rosa-Sibakov ◽  
Maria Julia de Oliveira Carvalho ◽  
Martina Lille ◽  
Emilia Nordlund

Oat bran is a nutritionally rich ingredient, but it is underutilized in semi-moist and liquid foods due to technological issues such as high viscosity and sliminess. The aim of this work was to improve the technological properties of oat bran concentrate (OBC) in high-moisture food applications by enzymatic and mechanical treatments. OBC was hydrolyzed with β-glucanase (OBC-Hyd) and the water-soluble fraction (OBC-Sol) was separated. OBC, OBC-Hyd and OBC-Sol were further microfluidized at 5% dry matter content. Enzymatic treatment and microfluidization of OBC reduced the molecular weight (Mw) of β-glucan from 2748 kDa to 893 and 350 kDa, respectively, as well as the average particle size of OBC (3.4 and 35 times, respectively). Both treatments increased the extractability of the soluble compounds from the OBC samples (up to 80%) and affected their water retention capacity. OBC in suspension had very high viscosity (969 mPa·s) when heated, which decreased after both enzyme and microfluidization treatments. The colloidal stability of the OBC in suspension was improved, especially after microfluidization. The addition of OBC samples to acid milk gels decreased syneresis, improved the water holding capacity and softened the texture. The changes in the suspension and gel characteristics were linked with reduced β-glucan Mw and OBC particle size.

2011 ◽  
Vol 415-417 ◽  
pp. 617-620 ◽  
Author(s):  
Yan Su ◽  
Ying Yun Lin ◽  
Yu Li Fu ◽  
Fan Qian ◽  
Xiu Pei Yang ◽  
...  

Water-soluble gold nanoparticles (AuNPs) were prepared using 2-mercapto-4-methyl-5- thiazoleacetic acid (MMTA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The AuNPs product was analyzed by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the particles were well-dispersed and their average particle size is about 5 nm. The UV-vis absorption and FTIR spectra confirm that the MMTA-AuNPs was stabilized by the carboxylate ions present on the surface of the AuNPs.


2002 ◽  
Vol 720 ◽  
Author(s):  
N N Ghosh

AbstractIn the present investigation, an attempt has been made to establish a new chemical route for synthesis of the nanostructured mixed oxide ferrite powders. By using this chemical method a variety of ferrite powders having spinel structure and doped with Co, Ni, Mn, Zn etc has been prepared. In this method nitrate salts of the different metals were used as starting materials. The aqueous solutions of the metal nitrates were mixed according to the molar ration of the compositions. Then the mixtures were mixed with an aqueous solution of water soluble polymer (polyvinyl alcohol). This mixture after drying yield fluffy brown powders. These powders were then calcined at different temperatures ranging from 400 °C to 700 °C. Nanostructured powders were obtained from the thermal decomposition of the brown powders. The powders, prepared by calcinations at different temperatures, were characterized by using X-Ray diffraction analysis, IR spectroscopy, TGA/DTA, and TEM. It was observed that the average particle size of the powders are in nanometer scale with a narrow size distribution. The average particle size of the powders was increased with the increase of calcinations temperature.This chemical method has proved to provide a convenient process for the preparation of nanostructured ceramic powders at comparatively low temperatures and offers the potential of being a simple and cost-effective route.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 320 ◽  
Author(s):  
Dries Devlaminck ◽  
Paul Van Steenberge ◽  
Marie-Françoise Reyniers ◽  
Dagmar D’hooge

A 5-dimensional Smith-Ewart based model is developed to understand differences for reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization with theoretical agents mimicking cases of slow fragmentation, cross-termination, and ideal exchange while accounting for chain length and monomer conversion dependencies due to diffusional limitations. The focus is on styrene as a monomer, a water soluble initiator, and a macro-RAFT agent to avoid exit/entry of the RAFT leaving group radical. It is shown that with a too low RAFT fragmentation rate coefficient it is generally not afforded to consider zero-one kinetics (for the related intermediate radical type) and that with significant RAFT cross-termination the dead polymer product is dominantly originating from the RAFT intermediate radical. To allow the identification of the nature of the RAFT retardation it is recommended to experimentally investigate in the future the impact of the average particle size (dp) on both the monomer conversion profile and the average polymer properties for a sufficiently broad dp range, ideally including the bulk limit. With decreasing particle size both a slow RAFT fragmentation and a fast RAFT cross-termination result in a stronger segregation and thus rate acceleration. The particle size dependency is different, allowing further differentiation based on the variation of the dispersity and end-group functionality. Significant RAFT cross-termination is specifically associated with a strong dispersity increase at higher average particle sizes. Only with an ideal exchange it is afforded in the modeling to avoid the explicit calculation of the RAFT intermediate concentration evolution.


2016 ◽  
Vol 45 (4) ◽  
pp. 259-264
Author(s):  
Wen Li ◽  
Zhongbin Bao ◽  
Lijun Chen ◽  
Dongshun Deng

Purpose At present, the conventional method of preparing cationic fluorinated acrylic latex is to emulsify copolymerised monomers with cationic surfactants. However, there has been a wide concern about using Gemini surfactants to prepare cationic polymer latex to improve its properties. The purpose of this paper was to focus on the synthesis of novel self-crosslinked cationic fluorinated acrylic latex (SCFAL), during which the copolymerised monomers were initiated with a water soluble azo initiator and emulsified with mixed surfactants of Gemini emulsifier and alkyl polyglycoside (APG). Design/methodology/approach The novel SCFAL was prepared successfully by the semi-continuous seeded emulsion polymerisation of butyl acrylate, methyl methacrylate, hexafluorobutyl methacrylate (HFMA) and hydroxy propyl methacrylate (HPMA) in aqueous medium. Findings The conversion is the maximum and the coagulation percentage the minimum when the amounts of emulsifier and initiator are 8 and 0.6 per cent, respectively. The average particle size of the latex is significantly reduced with the increase of the amount of emulsifiers used. However, the average particle size of the latex is increased with the increase of the amount of HPMA. The particle size of the latex is of a unimodal distribution, which means that the particle size was reasonably uniform. Contact angle is increased with the increase of the amount of the HFMA. Practical implications The novel SCFAL can be widely used as significant components in the field of coatings, leather, textile, paper, adhesives and so on. Originality/value SCFAL, which was emulsified with novel mixed surfactants of Gemini surfactant and APG, has been prepared successfully. Influences of amount of initiator, emulsifier, HPMA and HFMA on emulsion polymerisation and/or properties of novel latex are investigated in detail.


Author(s):  
SOBITHARANI P ◽  
ANANDAM S ◽  
MOHAN VARMA M ◽  
VIJAYA RATNA J ◽  
SHAILAJA P

Objective: The main objective of this study was to investigate the release pattern of a poorly water-soluble drug quercetin (QU) by fabricating its cyclodextrin nanosponges. Methods: Characterization of the original QU powder and QU-loaded nanosponges was carried out by the Fourier-transformed infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dissolution tester. The drug release pattern was subjected to various kinetic models. Results: FTIR studies confirmed the formation of inclusion complex of drug. The particle size analysis revealed that the average particle size measured by laser light scattering method is around 400–420 nm with low polydispersity index. The particle size distribution is unimodal and having a narrow range. A sufficiently high zeta potential indicates that the complexes would be stable and the tendency to agglomerate would be miniscule. TEM image revealed the porous nature of nanosponges. The dissolution of the QU nanosponges was significantly higher compared with the pure drug. Conclusion: From the kinetic study, it is apparent that the regression coefficient value closer to unity in case of Korsmeyer-Peppas model indicates that the drug release exponentially to the elapsed time. n value obtained from the Korsmeyer-Peppas plots, i.e., 0.9911 indicating non-Fickian (anomalous) transport ; thus, it projected that delivered its active ingredient by coupled diffusion and erosion.


Author(s):  
Mohini E. Shinde ◽  
Mitesh P. Sonawane ◽  
Avish D. Maru

Solubility is an essential factor for drug effectiveness. Simvastatin is poorly water-soluble drug and its bioavailability is very low. Nanosuspension is one of those approach which can tremendously enhance the effective surface area of drug particles by reducing the particle size and there by increases the rate of dissolution and hence improve bioavailability. The main purpose of the present investigation was to increase the saturation solubility of simvastatin by preparation of nanosuspension. Nanosuspension of simvastatin were prepared by nanoprecipitation method using hydroxypropyl cellulose as stabilizer and sodium lauryl sulphate as surfactant. Prepared nanosuspension was evaluated for its particle size, total drug content, entrapment efficiency and saturation solubility study. On the basis of the evaluation, the best batch F8 formulation demonstrated highest drug content and entrapment efficiency with average particle size of 0.004µm. The saturation solubility studies show the solubility of the prepared nanosuspension has increased as compared to the pure drug due to the particle size reduction. The nanosuspension of simvastatin could be successfully prepared and can be concluded that the nanosuspension formulation is a promising approach to enhance the solubility. The nanoprecipitation is a simple and effective method to produce nano sized particles of poorly water-soluble drugs with enhance solubility.


2019 ◽  
pp. 261-269
Author(s):  
Maksim Aleksandrovich Promtov ◽  
Andrey Yur'yevich Stepanov

Was conducted an experimental study of dispersion of solid particles, extraction of humic acids (HA) and fullview acids (FA) in suspensions of peat and vermicompost with repeated mechanical and hydrodynamic treatment in a rotor-stator device (RSD). According to reduce the average particle size and increase the concentration of HA and FA in suspensions of peat and vermicompost on the number of cycles in the RSD have an exponential character. The average particle size in suspensions of peat and vermicompost decreases from average size of 1 mm to 30 µm at 40 times the treatment of the suspension in the RSD. The intensity of the mass transfer of target substances from the solid phase to the liquid phase is due to an increase in the contact area of the phases, the value of which depends not only on the surface area of the solid particles, but significantly increases due to the opening of new pores and capillaries during particle grinding. The concentration of water-soluble HA in 25% peat suspension reaches 20 g/l, the concentration of FA – 6 g/l. The concentration of water-soluble HA in 25% vermicompost suspension reaches 12 g/l. Extractable substances on the surface of the particle and in the pores close to the surface, pass into the solution mainly during the first 10 treatment cycles. Effective diffusion coefficients and empirical coefficients of the kinetic equation for the extraction process of HA and FA in peat and vermicompost suspensions during their processing in RSD were determined.


2014 ◽  
Vol 8 ◽  
pp. 40-45 ◽  
Author(s):  
Bandana Lamichhane ◽  
Pravin Ojha ◽  
Bhupendra Paudyal

This research work was based on formulation of cereal based extruded product utilizing the underutilized grains of Nepal i.e. sorghum (white variety) and ricebean (yellow variety). The formulation having 76% maize, 15% sorghum and 9% ricebean was found best through sensory analysis. While further variation in grit particle size ranging from 550 μm to 1190 μm, the product formulated with average particle size of 1090 μm was found to have best. The optimum grit size was selected by sensory analysis, chemical analysis and physico-chemical analysis. The expansion value for product of 1090 μm grit size was maximum 3.88±0.36, and minimum value 3.02±0.14 for smaller particle size 550 μm. The density was minimum, 80.46±12.72 kg/m3 for product of 1090 μm grit size and maximum, 175.33±11.89 kg/m3 for product of 550 μm grit size. The soluble fiber, β-glucan, WAI (water absorption index) and WSI (water soluble index) were found to be 6.52±0.61 % (db), 9.77±0.52 and 21.48±0.82 respectively for final product of grit size 1090 μm. DOI: http://dx.doi.org/10.3126/jfstn.v8i0.11748 J. Food Sci. Technol. Nepal, Vol. 8 (40-45), 2013


1970 ◽  
Vol 26 (1) ◽  
pp. 16 ◽  
Author(s):  
S Balasubramanian ◽  
Rajkumar Rajkumar ◽  
K K Singh

Experiment to identify ambient grinding conditions and energy consumed was conducted for fenugreek. Fenugreek seeds at three moisture content (5.1%, 11.5% and 17.3%, d.b.) were ground using a micro pulverizer hammer mill with different grinding screen openings (0.5, 1.0 and 1.5 mm) and feed rate (8, 16 and 24 kg h-1) at 3000 rpm. Physical properties of fenugreek seeds were also determined. Specific energy consumptions were found to decrease from 204.67 to 23.09 kJ kg-1 for increasing levels of feed rate and grinder screen openings. On the other hand specific energy consumption increased with increasing moisture content. The highest specific energy consumption was recorded for 17.3% moisture content and 8 kg h-1 feed rate with 0.5 mm screen opening. Average particle size decreased from 1.06 to 0.39 mm with increase of moisture content and grinder screen opening. It has been observed that the average particle size was minimum at 0.5 mm screen opening and 8 kg h-1 feed rate at lower moisture content. Bond’s work index and Kick’s constant were found to increase from 8.97 to 950.92 kWh kg-1 and 0.932 to 78.851 kWh kg-1 with the increase of moisture content, feed rate and grinder screen opening, respectively. Size reduction ratio and grinding effectiveness of fenugreek seed were found to decrease from 4.11 to 1.61 and 0.0118 to 0.0018 with the increase of moisture content, feed rate and grinder screen opening, respectively. The loose and compact bulk densities varied from 219.2 to 719.4 kg m-3 and 137.3 to 736.2 kg m-3, respectively.  


2020 ◽  
Vol 27 (22) ◽  
pp. 3623-3656 ◽  
Author(s):  
Bruno Fonseca-Santos ◽  
Patrícia Bento Silva ◽  
Roberta Balansin Rigon ◽  
Mariana Rillo Sato ◽  
Marlus Chorilli

Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.


Sign in / Sign up

Export Citation Format

Share Document