scholarly journals Impact of B-Ring Substitution and Acylation with Hydroxy Cinnamic Acids on the Inhibition of Porcine α-Amylase by Anthocyanin-3-Glycosides

Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 367 ◽  
Author(s):  
Julia A. H. Kaeswurm ◽  
Lisa Könighofer ◽  
Melanie Hogg ◽  
Andreas Scharinger ◽  
Maria Buchweitz

An inhibitory effect on α-amylase and α-glucosidase is postulated for polyphenols. Thus, ingestion of those secondary plant metabolites might reduce postprandial blood glucose level (hyperglycemia), which is a major risk factor for diabetes mellitus type II. In addition to a previous study investigating structure−effect relationships of different phenolic structures, the effect of anthocyanins is studied in detail here, by applying an α-amylase activity assay, on the basis of the conversion of 2-chloro-4-nitrophenyl-4-O-ß-galactopyranosyl maltoside (GalG2CNP) and detection of CNP release by UV/Vis spectroscopy and isothermal titration calorimetry (ITC). All anthocyanin-3-glucosides showed a mixed inhibition with a strong competitive proportion, Kic < 134 µM and Kiu < 270 µM; however, the impact of the B-ring substitution was not statistically significant. UV/Vis detection failed to examine the inhibitory effect of acylated cyanidins isolated from black carrot (Daucus carota ssp. Sativus var. Autrorubens Alef.). However, ITC measurements reveal a much stronger inhibitory effect compared to the cyanidin-3-glucoside. Our results support the hypothesis that anthocyanins are efficient α-amylase inhibitors and an additional acylation with a cinnamic acid boosts the observed effect. Therefore, an increased consumption of vegetables containing acylated anthocyanin derivatives might help to prevent hyperglycemia.

Author(s):  
Parastou Farshi ◽  
Eda Ceren Kaya ◽  
Fataneh Hashempour-Baltork ◽  
Kianoush Khosravi-Darani

: Coronaviruses have caused worldwide outbreaks in different periods. SARS (severe acute respiratory syndrome), was the first emerged virus from this family, followed by MERS (Middle East respiratory syndrome) and SARS-CoV-2 (2019-nCoV or COVID 19), which is newly emerged. Many studies have been conducted on the application of chemical and natural drugs for treating these coronaviruses and they are mostly focused on inhibiting the proteases of viruses or blocking their protein receptors through binding to amino acid residues. Among many substances which are introduced to have an inhibitory effect against coronaviruses through the mentioned pathways, natural components are of specific interest. Secondary and primary metabolites from plants, are considered as potential drugs to have an inhibitory effect on coronaviruses. IC50 value (the concentration in which there is 50% loss in enzyme activity), molecular docking score and binding energy are parameters to understand the ability of metabolites to inhibit the specific virus. In this study we did a review of 154 papers on the effect of plant metabolites on different coronaviruses and data of their IC50 values, molecular docking scores and inhibition percentages are collected in tables. Secondary plant metabolites such as polyphenol, alkaloids, terpenoids, organosulfur compounds, saponins and saikosaponins, lectins, essential oil, and nicotianamine, and primary metabolites such as vitamins are included in this study.


2019 ◽  
Vol 295 ◽  
pp. 412-422 ◽  
Author(s):  
Rebecca Klopsch ◽  
Susanne Baldermann ◽  
Franziska S. Hanschen ◽  
Alexander Voss ◽  
Sascha Rohn ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Carolina Escobar Rodríguez ◽  
Johannes Novak ◽  
Franziska Buchholz ◽  
Pia Uetz ◽  
Laura Bragagna ◽  
...  

The modes of interactions between plants and plant-associated microbiota are manifold, and secondary metabolites often play a central role in plant-microbe interactions. Abiotic and biotic (including both plant pathogens and endophytes) stress can affect the composition and concentration of secondary plant metabolites, and thus have an influence on chemical compounds that make up for the taste and aroma of fruit. While the role of microbiota in growth and health of plants is widely acknowledged, relatively little is known about the possible effect of microorganisms on the quality of fruit of plants they are colonizing. In this work, tomato (Solanum lycopersicum L.) plants of five different cultivars were grown in soil and in hydroponics to investigate the impact of the cultivation method on the flavor of fruit, and to assess whether variations in their chemical composition are attributable to shifts in bacterial microbiota. Ripe fruit were harvested and used for bacterial community analysis and for the analysis of tomato volatiles, sugars and acids, all contributing to flavor. Fruit grown in soil showed significantly higher sugar content, whereas tomatoes from plants under hydroponic conditions had significantly higher levels of organic acids. In contrast, aroma profiles of fruit were shaped by the tomato cultivars, rather than the cultivation method. In terms of bacterial communities, the cultivation method significantly defined the community composition in all cultivars, with the bacterial communities in hydroponic tomatoes being more variable that those in tomatoes grown in soil. Bacterial indicator species in soil-grown tomatoes correlated with higher concentrations of volatiles described to be perceived as “green” or “pungent.” A soil-grown specific reproducibly occurring ASV (amplicon sequence variants) classified as Bacillus detected solely in “Solarino” tomatoes, which were the sweetest among all cultivars, correlated with the amount of aroma-relevant volatiles as well as of fructose and glucose in the fruit. In contrast, indicator bacterial species in hydroponic-derived tomatoes correlated with aroma compounds with “sweet” and “floral” notes and showed negative correlations with glucose concentrations in fruit. Overall, our results point toward a microbiota-related accumulation of flavor and aroma compounds in tomato fruit, which is strongly dependent on the cultivation substrate and approach.


2021 ◽  
Vol 10 ◽  
Author(s):  
Maha Attjioui ◽  
Sinead Ryan ◽  
Aleksandra Konic Ristic ◽  
Thomas Higgins ◽  
Oscar Goñi ◽  
...  

Abstract Type II diabetes is considered the most common metabolic disorder in the developed world and currently affects about one in ten globally. A therapeutic target for the management of type II diabetes is the inhibition of α- glucosidase, an essential enzyme located at the brush border of the small intestinal epithelium. The inhibition of α-glucosidase results in reduced digestion of carbohydrates and a decrease in postprandial blood glucose. Although pharmaceutical synthetic inhibitors are available, these are usually associated with significant gastrointestinal side effects. In the present study, the impact of inhibitors derived from edible brown algae is being investigated and compared for their effect on glycaemic control. Carbohydrate- and polyphenolic-enriched extracts derived from Ascophyllum nodosum, Fucus vesiculosus and Undaria pinnatifida were characterised and screened for their inhibitory effects on maltase and sucrase enzymes. Furthermore, enzyme kinetics and the mechanism of inhibition of maltase and sucrase were determined using linear and nonlinear regression methods. All tested extracts showed a dose-dependent inhibitory effect of α-glucosidase with IC50 values ranging from 0⋅26 to 0⋅47 mg/ml for maltase; however, the only extract that was able to inhibit sucrase activity was A. nodosum, with an IC50 value of 0⋅83 mg/ml. The present study demonstrates the mechanisms in which different brown seaweed extracts with varying composition and molecular weight distribution differentially inhibit α-glucosidase activities. The data highlight that all brown seaweed extracts are not equal in the inhibition of carbohydrate digestive enzymes involved in postprandial glycaemia.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1401 ◽  
Author(s):  
Karolina Wojtunik-Kulesza ◽  
Anna Oniszczuk ◽  
Tomasz Oniszczuk ◽  
Maciej Combrzyński ◽  
Dominika Nowakowska ◽  
...  

There is increased interest in following a healthy lifestyle and consuming a substantial portion of secondary plant metabolites, such as polyphenols, due to their benefits for the human body. Food products enriched with various forms of fruits and vegetables are sources of pro-health components. Nevertheless, in many cases, the level of their activities is changed in in vivo conditions. The changes are strictly connected with processes in the digestive system that transfigure the structure of the active compounds and simultaneously keep or modify their biological activities. Much attention has focused on their bioavailability, a prerequisite for further physiological functions. As human studies are time consuming, costly and restricted by ethical concerns, in vitro models for investigating the effects of digestion on these compounds have been developed to predict their release from the food matrix, as well as their bioaccessibility. Most typically, models simulate digestion in the oral cavity, the stomach, the small intestine and, occasionally, the large intestine. The presented review aims to discuss the impact of in vitro digestion on the composition, bioaccessibility and antioxidant activity of food polyphenols. Additionally, we consider the influence of pH on antioxidant changes in the aforementioned substances.


2013 ◽  
Vol 14 (1) ◽  
Author(s):  
Budiasih Wahyuntari ◽  
Martinus Nicoadi Tekol Tekol

Penghambat alfa amilase adalah salah satu komponen dalam suplemen makanan yang telah lama digunakan untuk terapi kegemukan karena penghambat amilase mempengaruhi metabolisme karbohidrat dalam sistem pencernaan. Sejumlah peneliti melaporkan terdapat dua grup penghambat amilase, yaitu protein dan non protein. Penghambat protein dilaporkan terdapat dalam kelompok kacang-kacangan dan biji-bijian. Tujuan penelitian ini adalah untuk mengisolasi penghambat protein yang terdapat dalam kacang hijau dan kedele. Kacang hijau dan kedele merupakan kacang-kacangan yang penting dalam makanan popular di Indonesia. Penghambat protein diendapkan dengan konsentrasi bertingkat garam ammonium sulfat [(NH)4SO4] dari 30-70%. Penghambat protein diuji terhadap amilase saliva manusia (HSA) danamilase pankreas babi (PPA), serta kestabilannya terhadap pemanasan pada 100oC selama 30 menit. Hasil penelitian menunjukkan bahwa semua endapan jenuh dari semua konsentrasi amonium sulfat yang diuji menghambat PPA, tetapi tidak semua endapan jenuh tersebut dapatmenghambat HSA. Hanya semua endapan jenuh (NH)4SO4 dari kacang hijau yang dapat menghambat HSA, dan penghambatan tertinggi terhadap HSA adalah endapan jenuh (NH)4SO4 50%. Endapan jenuh (NH)4SO4 40 % dari kedele putih dan endapan jenuh (NH)4SO4 60% dari kedele hitam dengan masing-masing penghambatan 98.67; 26.86 and27.63%. Endapan jenuh (NH)4SO4 60-70% dari kacang hijau, 50% dari kedele putih dan 50% dari kedele hitam menghambat PPA 100%. Pemanasan penghambat pada 100oC selama 30 menit hampir tidak mempengaruhi penghambatannya terhadap PPA. Profil protein juga diamati menggunakan analisis SDS/PAGE.


2020 ◽  
Vol 14 (2) ◽  
pp. 141-152
Author(s):  
Xialing Sun ◽  
Rui Zhang ◽  
Xue Chen ◽  
Pengpeng Li ◽  
Jin Guo

Background: The sustainable development of the building industry has drawn increasing attention around the world. Nanomaterials and nanotechnology play an important role in the processes of energy saving and reducing consumption in the building industry. Nanotechnology patents provide key technological support for the green development of the building industry. Based on patent data in China, this paper quantitatively analyzed the application of nanotechnology patents in the building industry and the time trend, regional differences, and evolution of China's nano-patent applications in the building field. Methods: In this study, the environmental total factor productivity of the building industry considering carbon constraints was determined and then used as the dependent variable to measure the green development of the building industry. On this basis, a panel data regression model was constructed to determine the impact of nano-patents on the green development of the building industry. Results: Nanotechnology patents in the building industry can significantly improve total factor productivity. From the perspective of patent composition, technology-based patents that focus on substantial innovation can significantly promote the green development of the building industry, whereas strategic patents show a significant inhibitory effect. Regionally, the western region of China has the advantage of being less developed and thus more efficient than the central and eastern regions in the application of new nano-products. Finally, the research also showed a significant lag in the application of China's nanotechnology patents and low implementation efficiency. Conclusion: Nano patents can promote green development in the building industry, but there is room for improvement in the speed with which laboratory inventions are transformed into building engineering applications.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 77
Author(s):  
Cristina Adochite ◽  
Luminita Andronic

In the last years, nanoparticles such as TiO2, ZnO, NiO, CuO and Fe2O3 were mainly used in wastewater applications. In addition to the positive aspects concerning using nanoparticles in the advanced oxidation process of wastewater containing pollutants, the impact of these nanoparticles on the environment must also be investigated. The toxicity of nanoparticles is generally investigated by the nanomaterials’ effect on green algae, especially on Chlorella vulgaris. In this review, several aspects are reviewed: the Chlorella vulgaris culture monitoring and growth parameters, the effect of different nanoparticles on Chlorella vulgaris, the toxicity of photocatalyst nanoparticles, and the mechanism of photocatalyst during oxidative stress on the photosynthetic mechanism of Chlorella vulgaris. The Bold basal medium (BBM) is generally recognized as an excellent standard cultivation medium for Chlorella vulgaris in the known environmental conditions such as temperature in the range 20–30 °C and light intensity of around 150 μE·m2·s−1 under a 16/8 h light/dark cycle. The nanoparticles synthesis methods influence the particle size, morphology, density, surface area to generate growth inhibition and further algal deaths at the nanoparticle-dependent concentration. Moreover, the results revealed that nanoparticles caused a more potent inhibitory effect on microalgal growth and severely disrupted algal cells’ membranes.


Sign in / Sign up

Export Citation Format

Share Document