scholarly journals Distinct Tumor Microenvironments Are a Defining Feature of Strain-Specific CRISPR/Cas9-Induced MPNSTs

Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 583 ◽  
Author(s):  
Amanda Scherer ◽  
Victoria R. Stephens ◽  
Gavin R. McGivney ◽  
Wade R. Gutierrez ◽  
Emily A. Laverty ◽  
...  

The tumor microenvironment plays important roles in cancer biology, but genetic backgrounds of mouse models can complicate interpretation of tumor phenotypes. A deeper understanding of strain-dependent influences on the tumor microenvironment of genetically-identical tumors is critical to exploring genotype–phenotype relationships, but these interactions can be difficult to identify using traditional Cre/loxP approaches. Here, we use somatic CRISPR/Cas9 tumorigenesis approaches to determine the impact of mouse background on the biology of genetically-identical malignant peripheral nerve sheath tumors (MPNSTs) in four commonly-used inbred strains. To our knowledge, this is the first study to systematically evaluate the impact of host strain on CRISPR/Cas9-generated mouse models. Our data identify multiple strain-dependent phenotypes, including changes in tumor onset and the immune microenvironment. While BALB/c mice develop MPNSTs earlier than other strains, similar tumor onset is observed in C57BL/6, 129X1 and 129/SvJae mice. Indel pattern analysis demonstrates that indel frequency, type and size are similar across all genetic backgrounds. Gene expression and IHC analysis identify multiple strain-dependent differences in CD4+ T cell infiltration and myeloid cell populations, including M2 macrophages and mast cells. These data highlight important strain-specific phenotypes of genomically-matched MPNSTs that have implications for the design of future studies using similar in vivo gene editing approaches.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1485
Author(s):  
Aina Venkatasamy ◽  
Eric Guerin ◽  
Anais Blanchet ◽  
Christophe Orvain ◽  
Véronique Devignot ◽  
...  

The reasons behind the poor efficacy of transition metal-based chemotherapies (e.g., cisplatin) or targeted therapies (e.g., histone deacetylase inhibitors, HDACi) on gastric cancer (GC) remain elusive and recent studies suggested that the tumor microenvironment could contribute to the resistance. Hence, our objective was to gain information on the impact of cisplatin and the pan-HDACi SAHA (suberanilohydroxamic acid) on the tumor substructure and microenvironment of GC, by establishing patient-derived xenografts of GC and a combination of ultrasound, immunohistochemistry, and transcriptomics to analyze. The tumors responded partially to SAHA and cisplatin. An ultrasound gave more accurate tumor measures than a caliper. Importantly, an ultrasound allowed a noninvasive real-time access to the tumor substructure, showing differences between cisplatin and SAHA. These differences were confirmed by immunohistochemistry and transcriptomic analyses of the tumor microenvironment, identifying specific cell type signatures and transcription factor activation. For instance, cisplatin induced an “epithelial cell like” signature while SAHA favored a “mesenchymal cell like” one. Altogether, an ultrasound allowed a precise follow-up of the tumor progression while enabling a noninvasive real-time access to the tumor substructure. Combined with transcriptomics, our results underline the different intra-tumoral structural changes caused by both drugs that impact differently on the tumor microenvironment.


2021 ◽  
Author(s):  
Anuj K Yadav ◽  
Michael C. Lee ◽  
Melissa Lucero ◽  
Christopher J. Reinhardt ◽  
ShengZhang Su ◽  
...  

<p>Nitric oxide (NO) plays a critical role in acute and chronic inflammation. NO’s contributions to cancer are of particular interest due to its context-dependent bioactivities. For example, immune cells initially produce cytotoxic quantities of NO in response to the nascent tumor. However, it is believed that this fades over time and reaches a concentration that supports the tumor microenvironment (TME). These complex dynamics are further complicated by other factors, such as diet and oxygenation, making it challenging to establish a complete picture of NO’s impact on tumor progression. Although many activity-based sensing (ABS) probes for NO have been developed, only a small fraction have been employed <i>in vivo </i>and fewer yet are practical in cancer models where the NO concentration is < 200 nM. To overcome this outstanding challenge, we have developed BL<sub>660</sub>-NO, the first ABS probe for NIR bioluminescence imaging of NO in cancer. Owing to the low intrinsic background, high sensitivity, and deep tissue imaging capabilities of our design, BL<sub>660</sub>-NO was successfully employed to visualize endogenous NO in cellular systems, a human liver metastasis model, and a murine breast cancer model. Importantly, its exceptional performance facilitated the design of a dietary study to examine the impact of NO on the TME by varying the intake of fat. BL<sub>660</sub>-NO provides the first direct molecular evidence that intratumoral NO becomes elevated in mice fed a high-fat diet who became obese with larger tumors compared to control animals on a low-fat diet. These results indicate that an inflammatory diet can increase NO production via recruitment of macrophages and overexpression of iNOS which in turn can drive tumor progression.<br></p>


Biomedicines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 47 ◽  
Author(s):  
Jean-Daniel Masson ◽  
Benoit Blanchet ◽  
Baptiste Periou ◽  
François-Jérôme Authier ◽  
Baharia Mograbi ◽  
...  

Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved catabolic process whose loss-of-function has been linked to a growing list of pathologies. Knockout mouse models of key autophagy genes have been instrumental in the demonstration of the critical functions of autophagy, but they display early lethality, neurotoxicity and unwanted autophagy-independent phenotypes, limiting their applications for in vivo studies. To avoid problems encountered with autophagy-null transgenic mice, we investigated the possibility of disturbing autophagy pharmacologically in the long term. Hydroxychloroquine (HCQ) ip injections were done in juvenile and adult C57bl/6j mice, at range doses adapted from the human malaria prophylactic treatment. The impact on autophagy was assessed by western-blotting, and juvenile neurodevelopment and adult behaviours were evaluated for four months. Quite surprisingly, our results showed that HCQ treatment in conditions used in this study neither impacted autophagy in the long term in several tissues and organs nor altered neurodevelopment, adult behaviour and motor capabilities. Therefore, we recommend for future long-term in vivo studies of autophagy, to use genetic mouse models allowing conditional inhibition of selected Atg genes in appropriate lineage cells instead of HCQ treatment, until it could be successfully revisited using higher HCQ doses and/or frequencies with acceptable toxicity.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2078
Author(s):  
Luca Gelsomino ◽  
Giuseppina Daniela Naimo ◽  
Rocco Malivindi ◽  
Giuseppina Augimeri ◽  
Salvatore Panza ◽  
...  

Aberrant leptin (Ob) signaling, a hallmark of obesity, has been recognized to influence breast cancer (BC) biology within the tumor microenvironment (TME). Here, we evaluated the impact of leptin receptor (ObR) knockdown in affecting BC phenotype and in mediating the interaction between tumor cells and macrophages, the most abundant immune cells within the TME. The stable knockdown of ObR (ObR sh) in ERα-positive and ERα-negative BC cells turned the tumor phenotype into a less aggressive one, as evidenced by in vitro and in vivo models. In xenograft tumors and in co-culture experiments between circulating monocytes and BC cells, the absence of ObR reduced the recruitment of macrophages, and also affected their cytokine mRNA expression profile. This was associated with a decreased expression and secretion of monocyte chemoattractant protein-1 in ObR sh clones. The loss of Ob/ObR signaling modulated the immunosuppressive TME, as shown by a reduced expression of programmed death ligand 1/programmed cell death protein 1/arginase 1. In addition, we observed increased phagocytic activity of macrophages compared to control Sh clones in the presence of ObR sh-derived conditioned medium. Our findings, addressing an innovative role of ObR in modulating immune TME, may open new avenues to improve BC patient health care.


2011 ◽  
Vol 29 (16) ◽  
pp. 2273-2281 ◽  
Author(s):  
Katerina Politi ◽  
William Pao

Genetically engineered mouse models (GEMMs) of human cancer were first created nearly 30 years ago. These early transgenic models demonstrated that mouse cells could be transformed in vivo by expression of an oncogene. A new field emerged, dedicated to generating and using mouse models of human cancer to address a wide variety of questions in cancer biology. The aim of this review is to highlight the contributions of mouse models to the diagnosis and treatment of human cancers. Because of the breadth of the topic, we have selected representative examples of how GEMMs are clinically relevant rather than provided an exhaustive list of experiments. Today, as detailed here, sophisticated mouse models are being created to study many aspects of cancer biology, including but not limited to mechanisms of sensitivity and resistance to drug treatment, oncogene cooperation, early detection, and metastasis. Alternatives to GEMMs, such as chemically induced or spontaneous tumor models, are not discussed in this review.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 57-57
Author(s):  
Yujia Shen ◽  
Salomon Manier ◽  
Sabrin Tahri ◽  
Brianna Berrios ◽  
Oksana Zavidij ◽  
...  

Abstract Introduction: Multiple Myeloma (MM) is an incurable malignancy characterized by the proliferation of clonal plasma cells in the bone marrow (BM). MM almost always progresses from the precursor states of monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM), which indicates the presence of a gradual clonal evolution underlying progression from the original stages of tumor development to the time of clinical presentation. Clonal heterogeneity adds another layer of complexity to that, by introducing interclonal competition in the context of disease progression or therapeutic bottlenecks. Here we developed a mouse model to investigate the impact of multiple clonal mutations on tumor development, as well as the competitive expansion of individual clones. Methods: Primary mouse MM Vk*Myc cells stably expressing Cas9 were infected with validated sgRNAs to knockout (KO) genes of interest (P53, Cyld, Rb1, Dis3, Prdm1, Traf3 and Fam46c) that are significantly mutated in human MM. KO cells were mixed at a 1:1 ratio with control cells infected with control sgRNA and injected intravenously into 8-week-old RAG2 KO mice. Vk*Myc cells were then isolated from bone marrow and spleen through CD138 positive selection, followed by genomic DNA extraction and NGS sequencing to understand the dynamic changes in abundance of mutants from injection to early and late timepoints. Results: In vitro, most knockout Vk*Myc cells had a similar proliferation rate to control cells with the exception of P53 and Rb1 knockout cells, which grew faster as expected; both P53 and RB1 are known cell cycle regulators. However, when co-injected into RAG2 KO mice (Vk*Myc cells constructed with Cas9 do not engraft in C57BL/6 mice), although P53 and Rb1 knockout cells remained the strongest competitors, occupying the majority of the tumor, most KO cells exhibited significantly enhanced proliferation over control cells. These results indicate that certain mutations only become advantageous in the context of the tumor microenvironment, while mutations that directly affect the tumor cell's proliferation rate give rise to more flexible, potent clones. To better understand these differences, we took advantage of the CRISPR-induced heterogeneous pool of genomic edits per gene, and looked at clonal abundancy rates within each knockout population separately. Interestingly, we found mutants with certain insertions/deletions grew faster than others and were overrepresented at the late stage of disease, even when they were generated from the same double-stranded break. Although it is well established that mutations in different regions of the same gene might have different effects, these results indicate that different mutations in the exact same spot can give rise to clones of variable potency and beg the question of whether mutation sequence is as important as mutation hotspot. Conclusion: We established a mouse model to study clonal competition in vivo, utilizing the CRISPR-Cas9 genome editing toolset. Through our model, we were able to witness a range of competitive potential among genes that are significantly mutated in multiple myeloma, with P53- and RB1-mutants as the strongest competitors. Furthermore, we observed that competitive potential can be conditional, with certain mutants conferring fitness advantage only in the context of tumor microenvironment. Adding another layer of complexity to differential fitness, we found that different mutations in the same spot of the same gene give rise to clones of varied potency, implicating mutation sequence as a novel fitness variable. In this study, we thus demonstrate that mutational candidates can be prioritized based on competitive potential, a process of the utmost importance given multiple myeloma's marked genetic heterogeneity. Disclosures Ghobrial: Celgene: Consultancy; Takeda: Consultancy; Janssen: Consultancy; BMS: Consultancy.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi7-vi7
Author(s):  
Otani Yoshihiro ◽  
Ji Young Yoo ◽  
Sean E Lawler ◽  
Antonio E Chiocca ◽  
Balveen Kaur

Abstract Oncolytic herpes simplex virus-1 (oHSV) is novel FDA-approved immunotherapy for advanced melanoma patients in US. Also, oHSV is recently approved for the treatment of recurrent GBM in Japan. We have shown that oHSV treatment of GBM cells induces NICD cleavage and NOTCH activation in adjacent uninfected glioma cells via HSV-1 microRNA-H16 (Otani Y and Yoo JY, Clin Cancer Res, 2020), however, the consequences of NOTCH on immunotherapy in GBM is unknow. Here we have investigated the impact of oHSV-induced NOTCH signaling on the tumor microenvironment (TME). Analysis of TCGA GBM data and experimental murine models revealed NOTCH induced immunosuppressive myeloid cell recruitment and limited anti-tumor immunity. In oHSV treated tissue, viral infection educated tumor associated macrophages to secrete CCL2 which recruited monocytic myeloid derived suppressor cell (MDSC) that attenuated anti-tumor immunity. Consistent with this, CCL2 induction was also observed in serum of recurrent GBM patients treated with oHSV (NCT03152318). Importantly, blockade of NOTCH signaling reduced the oHSV induced immunosuppressive environment and activated a CD8 dependent anti-tumor memory response. These findings present the opportunities for combination therapies that can help improve therapeutic benefit and anti-tumor immunity in GBM.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Stephen K Horrigan ◽  
Pascal Courville ◽  
Darryl Sampey ◽  
Faren Zhou ◽  
Steve Cai ◽  
...  

In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Chroscinski et al., 2014) that described how we intended to replicate selected experiments from the paper "Melanoma genome sequencing reveals frequent PREX2 mutations" (Berger et al., 2012). Here we report the results of those experiments. We regenerated cells stably expressing ectopic wild-type and mutant phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2 (PREX2) using the same immortalized human NRASG12D melanocytes as the original study. Evaluation of PREX2 expression in these newly generated stable cells revealed varying levels of expression among the PREX2 isoforms, which was also observed in the stable cells made in the original study (Figure S6A; Berger et al., 2012). Additionally, ectopically expressed PREX2 was found to be at least 5 times above endogenous PREX2 expression. The monitoring of tumor formation of these stable cells in vivo resulted in no statistically significant difference in tumor-free survival driven by PREX2 variants, whereas the original study reported that these PREX2 mutations increased the rate of tumor incidence compared to controls (Figure 3B and S6B; Berger et al., 2012). Surprisingly, the median tumor-free survival was 1 week in this replication attempt, while 70% of the control mice were reported to be tumor-free after 9 weeks in the original study. The rapid tumor onset observed in this replication attempt, compared to the original study, makes the detection of accelerated tumor growth in PREX2 expressing NRASG12D melanocytes extremely difficult. Finally, we report meta-analyses for each result.


2018 ◽  
Author(s):  
Philipp M. Altrock ◽  
Nara Yoon ◽  
Joshua A. Bull ◽  
Hao Wu ◽  
Javier Ruiz-Ramírez ◽  
...  

Abstract— Advances in molecular oncology research culminated in the development of targeted therapies that act on defined molecular targets either on tumor cells directly (such as inhibitors of oncogenic kinases), or indirectly by targeting the tumor microenvironment (such as anti-angiogenesis drugs). These therapies can induce strong clinical responses, when properly matched to patients. Unfortunately, most targeted therapies ultimately fail as tumors evolve resistance. Tumors consist not only of neoplastic cells, but also of stroma, whereby “stroma” is the umbrella term for non-tumor cells and extracellular matrix (ECM) within the tumor microenvironment, possibly excluding immune cells1. We know that tumor stroma is an important player in the development of resistance. We also know that stromal architecture is spatially complex, differs from patient to patient and changes with therapy. However, to this date we do not understand the link between spatial and temporal changes in stromal architecture and response of tumors to therapy, in space and time. In this project we sought to address this gap of knowledge using a combination of mathematical and statistical modeling, experimental in vivo studies, and analysis of clinical samples in therapies that target tumor cells directly (in lung and breast cancers) and indirectly (in kidney cancer). This knowledge will inform therapy choices and offer new angles for therapeutic interventions. Our main question is: how does spatial architecture of stroma impact the emergence or evolution of resistance to targeted therapies, and how can we use this knowledge clinically?


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 524-524
Author(s):  
James L. LaBelle ◽  
Jill K. Fisher ◽  
Samuel G. Katz ◽  
Gregory H. Bird ◽  
Chelsea E. Lawrence ◽  
...  

Abstract Selective targeting of deregulated apoptotic protein networks is a promising pharmacologic strategy for subverting diseases of unrestrained cellular survival, such as cancer. BCL-2 family protein interactions constitute a critical control point for the regulation of apoptosis. Whereas multidomain anti-apoptotic proteins such as BCL-2 guard against cell death, multidomain pro-apoptotic proteins such as BAX constitute a gateway to cell death through mitochondrial damage. The BH3-only proteins function as death sentinels situated throughout the cell, poised to transmit signals of cellular injury to multidomain members. BH3-only proteins deliver their death messages via their conserved alpha-helical BH3 domains. Whereas the indirect activator class of BH3-only proteins (e.g. BAD) counteract anti-apoptotic proteins, the direct activator subgroup (e.g. BIM) is believed to trigger apoptosis both by neutralizing anti-apoptotics and by directly activating the mitochondrial executioners BAX and BAK. The essential roles of BH3-only proteins in maintaining cellular homeostasis is highlighted by the development of autoimmune disease and cancer in mouse models of BH3-only protein deficiency. By inserting hydrocarbon “staples” into native BH3 peptide sequences, we have produced a chemical toolbox of stabilized alpha-helices of BCL-2 domains (SAHBs) to dissect apoptotic signaling pathways in vivo and explore the pharmacodynamic effects of “BH3 replacement” in cancer cells and mouse models of deregulated apoptosis. Whereas SAHBs display high affinity binding to anti-apoptotic targets, BID and BIM SAHBs also directly engage BAX and are thus especially potent in inducing apoptosis of a panel of leukemia and lymphoma cell lines. To evaluate the impact of selective BH3 replacement in vivo, we tested the capacity of BIM SAHB to reactivate apoptosis in the lymphoproliferative disease of Bim-/- mice. Strikingly, Bim-/- mice treated with BIM SAHB displayed marked influx of tingible-body macrophages into the lymphoid infiltrates of affected organs, with scattered cells throughout the infiltrate robustly positive for activated caspase-3, suggestive of SAHB induced apoptosis induction. Our studies highlight the therapeutic potential of BH3 replacement to circumvent apoptotic blockade and restore the death pathway in hematologic cancer and lymphoproliferative disease.


Sign in / Sign up

Export Citation Format

Share Document