scholarly journals The AP2/ERF Gene Family in Triticum durum: Genome-Wide Identification and Expression Analysis under Drought and Salinity Stresses

Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1464
Author(s):  
Sahar Faraji ◽  
Ertugrul Filiz ◽  
Seyed Kamal Kazemitabar ◽  
Alessandro Vannozzi ◽  
Fabio Palumbo ◽  
...  

Members of the AP2/ERF transcription factor family play critical roles in plant development, biosynthesis of key metabolites, and stress response. A detailed study was performed to identify TtAP2s/ERFs in the durum wheat (Triticum turgidum ssp. durum) genome, which resulted in the identification of 271 genes distributed on chromosomes 1A-7B. By carrying 27 genes, chromosome 6A had the highest number of TtAP2s/ERFs. Furthermore, a duplication assay of TtAP2s/ERFs demonstrated that 70 duplicated gene pairs had undergone purifying selection. According to RNA-seq analysis, the highest expression levels in all tissues and in response to stimuli were associated with DRF and ERF subfamily genes. In addition, the results revealed that TtAP2/ERF genes have tissue-specific expression patterns, and most TtAP2/ERF genes were significantly induced in the root tissue. Additionally, 13 TtAP2/ERF genes (six ERFs, three DREBs, two DRFs, one AP2, and one RAV) were selected for further analysis via qRT-PCR of their potential in coping with drought and salinity stresses. The TtAP2/ERF genes belonging to the DREB subfamily were markedly induced under both drought-stress and salinity-stress conditions. Furthermore, docking simulations revealed several residues in the pocket sites of the proteins associated with the stress response, which may be useful in future site-directed mutagenesis studies to increase the stress tolerance of durum wheat. This study could provide valuable insights for further evolutionary and functional assays of this important gene family in durum wheat.

2019 ◽  
Vol 20 (6) ◽  
pp. 1425 ◽  
Author(s):  
Dongli Wang ◽  
Sen Meng ◽  
Wanlong Su ◽  
Yu Bao ◽  
Yingying Lu ◽  
...  

Poplar (Populus) is one of the most important woody plants worldwide. Drought, a primary abiotic stress, seriously affects poplar growth and development. Multiple organellar RNA editing factor (MORF) genes—pivotal factors in the RNA editosome in Arabidopsis thaliana—are indispensable for the regulation of various physiological processes, including organelle C-to-U RNA editing and plasmid development, as well as in the response to stresses. Although the poplar genome sequence has been released, little is known about MORF genes in poplar, especially those involved in the response to drought stress at the genome-wide level. In this study, we identified nine MORF genes in the Populus genome. Based on the structural features of MORF proteins and the topology of the phylogenetic tree, the P. trichocarpa (Ptr) MORF family members were classified into six groups (Groups I–VI). A microsynteny analysis indicated that two (22.2%) PtrMORF genes were tandemly duplicated and seven genes (77.8%) were segmentally duplicated. Based on the dN/dS ratios, purifying selection likely played a major role in the evolution of this family and contributed to functional divergence among PtrMORF genes. Moreover, analysis of qRT-PCR data revealed that PtrMORFs exhibited tissue- and treatment-specific expression patterns. PtrMORF genes in all group were involved in the stress response. These results provide a solid foundation for further analyses of the functions and molecular evolution of MORF genes in poplar, and, in particular, for improving the drought resistance of poplar by genetics manipulation.


2019 ◽  
Author(s):  
Yong Zhou ◽  
Yuan Cheng ◽  
Chunpeng Wan ◽  
Youxin Yang ◽  
Jinyin Chen

The plant DNA-binding with one finger (Dof) gene family is a class of plant-specific transcription factors that play vital roles in many biological processes and response to stresses. In the present study, a total of 36 ClDof genes were identified in the watermelon genome, which were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that the ClDof proteins could be divided into nine groups, and the members in a particular group had similar motif arrangement and exon-intron structure. We then analyzed the expression patterns of nine selected ClDof genes in eight specific tissues by qRT-PCR, and the results showed that they have tissue-specific expression patterns. We also evaluated the expression levels of the nine selected ClDof genes under salt stress and ABA treatments using qRT-PCR, and they showed differential expression under these treatments, suggesting their important roles in stress response. Taken together, our results provide a basis for future research on the biological functions of Dof genes in watermelon.


2019 ◽  
Author(s):  
Lanjie Zhao ◽  
Youjun Lu ◽  
Wei Chen ◽  
Jinbo Yao ◽  
Yan Li ◽  
...  

Abstract Background: Members of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED ( AHL ) family are involved in various plant biological processes via protein-DNA and protein-protein interaction. However, no the systematic identification and analysis of AHL gene family have been reported in cotton. Results: To investigate the potential functions of AHLs in cotton, genome-wide identification, expressions and structure analysis of the AHL gene family were performed in this study. 48, 51 and 99 AHL genes were identified from the G.raimondii, G.arboreum and G.hirsutum genome, respectively. Phylogenetic analysis revealed that the AHLs in cotton evolved into 2 clades, Clade-A with 4-5 introns and Clade-B with intronless (excluding AHL 20-2). Based on the composition of the AT-hook motif(s) and PPC/DUF 296 domain, AHL proteins were classified into three types (Type-I/-II/-III), with Type-I AHLs forming Clade-B, and the other two types together diversifying in Clade-A. The detection of synteny and collinearity showed that the AHLs expanded with the WGD in cotton, and the sequence structure of AHL20-2 showed the tendency of increasing intron in three different Gossypium spp . The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates of orthologous gene pairs revealed that the AHL genes of G.hirsutum had undergone through various selection pressures, purifying selection mainly in A-subgenome and positive selection mainly in D-subgenome. Examination of their expression patterns showed most of AHLs of Clade-B expressed predominantly in stem, while those of Clade-A in ovules, suggesting that the AHLs within each clade shared similar expression patterns with each other. qRT-PCR analysis further confirmed that some GhAHLs higher expression in stems and ovules. Conclusion: In this study, 48, 51 and 99 AHL genes were identified from three cotton genomes respectively. AHLs in cotton were classified into two clades by phylogenetic relationship and three type based on the composition of motif and domain. The AHLs expanded with segmental duplication, not tandem duplication. The expression profiles of GhAHLs revealed abundant differences in expression levels in various tissues and at different stages of ovules development. Our study provided significant insights into the potential functions of AHLs in regulating the growth and development in cotton.


2021 ◽  
Author(s):  
Zheng Liu ◽  
Jia-Li Liu ◽  
Lin An ◽  
Tao Wu ◽  
Li Yang ◽  
...  

Abstract Background: Canopy architecture is critical in determining the light environment, and subsequently the photosynthetic productivity of fruit crops. Numerous CCT domain-containing genes are crucial for plant adaptive responses to diverse environmental cues. Due to the biological importance of CCT genes, many researchers have focused on their functional characterization. However, little information was available about the CCT genes (PbCCTs) of pear, an important fruit crop.Results: Genome-wide sequence analysis identified 42 putative PbCCTs in the genome of pear (Pyrus bretschneideri Rehd.). Phylogenetic analysis indicated these genes were divided into five subfamilies, namely, COL (14 members), PRR (8 members), ZIM (6 members), TCR1 (6 members) and ASML2 (8 members). Analysis of exon-intron structures and conserved domains provided support for the classification. Genome duplication analysis indicated that segmental duplication events played a crucial role in the expansion of the CCT family in pear, and that the CCT family evolved under the effect of purifying selection. Expression profiles exhibited diverse expression patterns of PbCCTs in various tissues and in response to varying red and blue light. Additionally, transient overexpression of PbPRR2 in Nicotiana benthamiana leaves resulted in inhibition of photosynthetic performance, suggesting that PbPRR2 may be a negative regulator of photosynthesis. Conclusions:This study provides a comprehensive analysis of the CCT gene family in pear and will facilitate further functional investigations of the PbCCTs to uncover their biological roles in light response.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Khadiza Khatun ◽  
Sourav Debnath ◽  
Arif Hasan Khan Robin ◽  
Antt Htet Wai ◽  
Ujjal Kumar Nath ◽  
...  

Abstract Background CONSTANS-like (CO-like, COL) are putative zinc-finger transcription factors known to play vital role in various plant biological processes such as control of flowering time, regulation of plant growth and development and responses to stresses. However, no systematic analysis of COL family gene regarding the plant development and stress response has been previously performed in any solanaceous crop. In the present study, a comprehensive genome-wide analysis of COL family genes in petunia has been conducted to figure out their roles in development of organs and stress response. Results A total of 33 COL genes, 15 PaCOL genes in P. axillaris and 18 PiCOL genes in P. inflata, were identified in petunia. Subsequently, a genome-wide systematic analysis was performed in 15 PaCOL genes. Considering the domain composition and sequence similarity the 15 PaCOL and 18 PiCOL genes were phylogenetically classified into three groups those are conserved among the flowering plants. Moreover, all of the 15 PaCOL proteins were localized in nucleus. Furthermore, differential expression patterns of PaCOL genes were observed at different developmental stages of petunia. Additionally, transcript expression of 15 PaCOL genes under various abiotic and phytohormone treatments showed their response against stresses. Moreover, several cis-elements related to stress, light-responsive, hormone signaling were also detected in different PaCOL genes. Conclusion The phylogenetic clustering, organ specific expression pattern and stress responsive expression profile of conserved petunia COL genes indicating their involvement in plant growth and development and stress response mechanism. This work provide a significant foundation for understanding the biological roles of petunia COL genes in plant growth, development and in stress response.


2018 ◽  
Vol 19 (10) ◽  
pp. 3246 ◽  
Author(s):  
Jianbo Li ◽  
Jin Zhang ◽  
Huixia Jia ◽  
Zhiqiang Yue ◽  
Mengzhu Lu ◽  
...  

Small heat shock proteins (sHsps) function mainly as molecular chaperones that play vital roles in response to diverse stresses, especially high temperature. However, little is known about the molecular characteristics and evolutionary history of the sHsp family in Salix suchowensis, an important bioenergy woody plant. In this study, 35 non-redundant sHsp genes were identified in S. suchowensis, and they were divided into four subfamilies (C, CP, PX, and MT) based on their phylogenetic relationships and predicted subcellular localization. Though the gene structure and conserved motif were relatively conserved, the sequences of the Hsp20 domain were diversified. Eight paralogous pairs were identified in the Ssu-sHsp family, in which five pairs were generated by tandem duplication events. Ka/Ks analysis indicated that Ssu-sHsps had undergone purifying selection. The expression profiles analysis showed Ssu-Hsps tissue-specific expression patterns, and they were induced by at least one abiotic stress. The expression correlation between two paralogous pairs (Ssu-sHsp22.2-CV/23.0-CV and 23.8-MT/25.6-MT) were less than 0.6, indicating that they were divergent during the evolution. Various cis-acting elements related to stress responses, hormone or development, were detected in the promoter of Ssu-sHsps. Furthermore, the co-expression network revealed the potential mechanism of Ssu-sHsps under stress tolerance and development. These results provide a foundation for further functional research on the Ssu-sHsp gene family in S. suchowensis.


Author(s):  
Qian Wan ◽  
Lu Luo ◽  
Xiurong Zhang ◽  
Yuying Lv ◽  
Suqing Zhu ◽  
...  

AbstractThe nuclear factor Y (NF-Y) transcription factor (TF) family consists of three subfamilies NF-YA, NF-YB and NF-YC. Many studies have proven that NF-Y complex plays multiple essential roles in stress response in Arabidopsis and other plant species. However, little attention has been given to these genes in peanut. In this study, thirty-three AhNF-Y genes were identified in cultivated peanut and they were distributed on 16 chromosomes. A phylogenetic analysis of the NF-Y amino acid sequences indicated that the peanut NF-Y proteins were clustered in pairs at the end of the branches and showed high conservation with previous reported plant NF-Ys. Evolutionary history analysis showed that only segmental duplication contributed to expansion of this gene family. Analysis of the 1500-bp regulatory regions upstream the start codon showed that, except for AhNF-YB6, peanut NF-Ys contained at least one abiotic stress response element in their regulatory region. Expression patterns of peanut NF-Ys in 22 tissues and developmental stages were analyzed. A few NF-Ys showed universal expression patterns, while most NF-Ys showed specific expression patterns. Through RNA-seq and qRT-PCR analyses, expression of six AhNF-Y genes was induced under salt stress in leaves or roots. In addition, AhNF-YA4/8/11, NF-YB4 and NF-YC2/8 also responded to osmotic stress, ABA (abscisic acid) and salicylic acid (SA) treatment.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ding Huang ◽  
Ruhong Ming ◽  
Shiqiang Xu ◽  
Shaochang Yao ◽  
Liangbo Li ◽  
...  

The R2R3-MYB gene family participates in several plant physiological processes, especially the regulation of the biosynthesis of secondary metabolites. However, little is known about the functions of R2R3-MYB genes in Gynostemma pentaphyllum (G. pentaphyllum), a traditional Chinese medicinal herb that is an excellent source of gypenosides (a class of triterpenoid saponins) and flavonoids. In this study, a systematic genome-wide analysis of the R2R3-MYB gene family was performed using the recently sequenced G. pentaphyllum genome. In total, 87 R2R3-GpMYB genes were identified and subsequently divided into 32 subgroups based on phylogenetic analysis. The analysis was based on conserved exon–intron structures and motif compositions within the same subgroup. Collinearity analysis demonstrated that segmental duplication events were majorly responsible for the expansion of the R2R3-GpMYB gene family, and Ka/Ks analysis indicated that the majority of the duplicated R2R3-GpMYB genes underwent purifying selection. A combination of transcriptome analysis and quantitative reverse transcriptase-PCR (qRT-PCR) confirmed that Gynostemma pentaphyllum myeloblastosis 81 (GpMYB81) along with genes encoding gypenoside and flavonol biosynthetic enzymes exhibited similar expression patterns in different tissues and responses to methyl jasmonate (MeJA). Moreover, GpMYB81 could bind to the promoters of Gynostemma pentaphyllum farnesyl pyrophosphate synthase 1 (GpFPS1) and Gynostemma pentaphyllum chalcone synthase (GpCHS), the key structural genes of gypenoside and flavonol biosynthesis, respectively, and activate their expression. Altogether, this study highlights a novel transcriptional regulatory mechanism that suggests that GpMYB81 acts as a “dual-function” regulator of gypenoside and flavonol biosynthesis in G. pentaphyllum.


2019 ◽  
Vol 20 (11) ◽  
pp. 2786 ◽  
Author(s):  
Yujiao Wang ◽  
Huifang Yan ◽  
Zhenfei Qiu ◽  
Bing Hu ◽  
Bingshan Zeng ◽  
...  

The sucrose non-fermentation-related protein kinase (SnRK) is a kind of Ser/Thr protein kinase, which plays a crucial role in plant stress response by phosphorylating the target protein to regulate the interconnection of various signaling pathways. However, little is known about the SnRK family in Eucalyptus grandis. Thirty-four putative SnRK sequences were identified in E. grandis and divided into three subgroups (SnRK1, SnRK2 and SnRK3) based on phylogenetic analysis and the type of domain. Chromosome localization showed that SnRK family members are unevenly distributed in the remaining 10 chromosomes, with the notable exception of chromosome 11. Gene structure analysis reveal that 10 of the 24 SnRK3 genes contained no introns. Moreover, conserved motif analyses showed that SnRK sequences belonged to the same subgroup that contained the same motif type of motif. The Ka/Ks ratio of 17 paralogues suggested that the EgrSnRK gene family underwent a purifying selection. The upstream region of EgrSnRK genes enriched with different type and numbers of cis-elements indicated that EgrSnRK genes are likely to play a role in the response to diverse stresses. Quantitative real-time PCR showed that the majority of the SnRK genes were induced by salt treatment. Genome-wide analyses and expression pattern analyses provided further understanding on the function of the SnRK family in the stress response to different environmental salt concentrations.


Sign in / Sign up

Export Citation Format

Share Document