scholarly journals Genomic Features of Open Chromatin Regions (OCRs) in Wild Soybean and Their Effects on Gene Expressions

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 640
Author(s):  
Ming-Kun Huang ◽  
Ling Zhang ◽  
Li-Meng Zhou ◽  
Wai-Shing Yung ◽  
Man-Wah Li ◽  
...  

Transcription activation is tightly associated with the openness of chromatin, which allows direct contact between transcriptional regulators, such as transcription factors, and their targeted DNA for downstream gene activation. However, the annotation of open chromatin regions (OCRs) in the wild soybean (Glycine soja) genome is limited. We performed assay for transposase-accessible chromatin using sequencing (ATAC-seq) and successfully identified 22,333 OCRs in the leaf of W05 (a wild soybean accession). These OCRs were enriched in gene transcription start sites (TSS) and were positively correlated with downstream gene expression. Several known transcription factor (TF)-binding motifs were also enriched at the OCRs. A potential regulatory network was constructed using these transcription factors and the OCR-marked genes. Furthermore, by overlapping the OCR distribution with those of histone modifications from chromatin immunoprecipitation followed by sequencing (ChIP-seq), we found that the distribution of the activation histone mark, H3K4me3, but not that of the repressive H3K27me3 mark, was closely associated with OCRs for gene activation. Several putative enhancer-like distal OCRs were also found to overlap with LincRNA-encoding loci. Moreover, our data suggest that homologous OCRs could potentially influence homologous gene expression. Hence, the duplication of OCRs might be essential for plant genome architecture as well as for regulating gene expression.

2003 ◽  
Vol 30 (3) ◽  
pp. 347-358 ◽  
Author(s):  
H Watanabe ◽  
A Suzuki ◽  
M Kobayashi ◽  
E Takahashi ◽  
M Itamoto ◽  
...  

In order to understand early events caused by estrogen in vivo, temporal uterine gene expression profiles at early stages were examined using DNA microarray analysis. Ovariectomized mice were exposed to 17beta-estradiol and the temporal mRNA expression changes of ten thousand various genes were analyzed. Clustering analysis revealed that there are at least two phases of gene activation during the period up to six hours. One involved immediate-early genes, which included certain transcription factors and growth factors as well as oncogenes. The other involved early-late genes, which included genes related to RNA and protein synthesis. In clusters of down-regulated genes, transcription factors, proteases, apoptosis and cell cycle genes were found. These hormone-inducible genes were not induced in estrogen receptor (ER) alpha knockout mice. Although expression of ERbeta is known in the uterus, these findings indicate the importance of ERalpha in the changes in gene expression in the uterus.


2021 ◽  
Author(s):  
Qingqing Xie ◽  
Qi Yu ◽  
Timothy O. Jobe ◽  
Allis Pham ◽  
Chennan Ge ◽  
...  

AbstractArsenic stress causes rapid transcriptional responses in plants. However, transcriptional regulators of arsenic-induced gene expression in plants remain less well known. To date, forward genetic screens have proven limited for dissecting arsenic response mechanisms. We hypothesized that this may be due to the extensive genetic redundancy present in plant genomes. To overcome this limitation, we pursued a forward genetics screen for arsenite tolerance using a randomized library of plants expressing >2,000 artificial microRNAs (amiRNAs). This library was designed to knock-down diverse combinations of homologous gene family members within sub-clades of transcription factor and transporter gene families. We identified six transformant lines showing an altered response to arsenite in root growth assays. Further characterization of an amiRNA line targeting closely homologous CBF and ERF transcription factors show that the CBF1,2 and 3 transcription factors negatively regulate arsenite sensitivity. Furthermore, the ERF34 and ERF35 transcription factors are required for cadmium resistance. Generation of CRISPR lines, higher-order T-DNA mutants, and gene expression analyses, further support our findings. These ERF transcription factors differentially regulate arsenite sensitivity and cadmium tolerance.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1228-1228
Author(s):  
Yanan Li ◽  
Riddhi M Patel ◽  
Emily Casey ◽  
Jeffrey A. Magee

The FLT3 Internal Tandem Duplication (FLT3ITD) is common somatic mutation in acute myeloid leukemia (AML). We have previously shown that FLT3ITD fails to induce changes in HSC self-renewal, myelopoiesis and leukemogenesis during fetal stages of life. FLT3ITD signal transduction pathways are hyperactivated in fetal progenitors, but FLT3ITD target genes are not. This suggests that postnatal-specific transcription factors may be required to help induce FLT3ITD target gene expression. Alternatively, repressive histone modifications may impose a barrier to FLT3ITD target gene activation in fetal HPCs that is relaxed during postnatal development. To resolve these possibilities, we used ATAC-seq, as well as H3K4me1, H3K27ac and H3K27me3 ChIP-seq, to identify cis-elements that putatively control FLT3ITD target gene expression in fetal and adult hematopoietic progenitor cells (HPCs). We identified many enhancer elements (ATAC-seq peaks with H3K4me1 and H3K27ac) that exhibited increased chromatin accessibility and activity in FLT3ITD adult HPCs relative to wild type adult HPCs. These elements were enriched near FLT3ITD target genes. HOMER analysis showed enrichment for STAT5, ETS, RUNX1 and IRF binding motifs within the FLT3ITD target enhancers, but motifs for temporally dynamic transcription factors were not identified. We cloned a subset of the enhancers and confirmed that they could synergize with their promoter to activate a luciferase reporter. For representative enhancers, STAT5 binding sites were required to activate the enhancer - as anticipated - and RUNX1 repressed enhancer activity. We tested whether accessibility or priming changed between fetal and adult stages of HPC development. FLT3ITD-dependent changes in chromatin accessibility were not observed in fetal HPCs, though the enhancers were primed early in development as evidenced by the presence of H3K4me1. Repressive H3K27me3 were not present at FLT3ITD target enhancers in either or adult HPCs. The data show that FLT3ITD target enhancers are demarcated early in hematopoietic development, long before they become responsive to FLT3ITD signaling. Repressive marks do not appear to create an epigenetic barrier to enhancer activation in the fetal stage. Instead, age-specific transcription factors are likely required to pioneer enhancer elements so that they can respond to STAT5 and other FLT3ITD effectors. Disclosures No relevant conflicts of interest to declare.


2000 ◽  
Vol 20 (24) ◽  
pp. 9317-9330 ◽  
Author(s):  
Frédéric Bantignies ◽  
Richard H. Goodman ◽  
Sarah M. Smolik

ABSTRACT CREB-binding protein (CBP) is a coactivator for multiple transcription factors that transduce a variety of signaling pathways. Current models propose that CBP enhances gene expression by bridging the signal-responsive transcription factors with components of the basal transcriptional machinery and by augmenting the access of transcription factors to DNA through the acetylation of histones. To define the pathways and proteins that require CBP function in a living organism, we have begun a genetic analysis of CBP in flies. We have overproduced Drosophila melanogaster CBP (dCBP) in a variety of cell types and obtained distinct adult phenotypes. We used an uninflated-wing phenotype, caused by the overexpression of dCBP in specific central nervous system cells, to screen for suppressors of dCBP overactivity. Two genes with mutant versions that act as dominant suppressors of the wing phenotype were identified: thePKA-C1/DCO gene, encoding the catalytic subunit of cyclic AMP protein kinase, and ash1, a member of thetrithorax group (trxG) of chromatin modifiers. Using immunocolocalization, we showed that the ASH1 protein is specifically expressed in the majority of the dCBP-overexpressing cells, suggesting that these proteins have the potential to interact biochemically. This model was confirmed by the findings that the proteins interact strongly in vitro and colocalize at specific sites on polytene chromosomes. The trxG proteins are thought to maintain gene expression during development by creating domains of open chromatin structure. Our results thus implicate a second class of chromatin-associated proteins in mediating dCBP function and imply that dCBP might be involved in the regulation of higher-order chromatin structure.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 501-501
Author(s):  
Kevin R. Gillinder ◽  
Graham Magor ◽  
Charles Bell ◽  
Melissa D. Ilsley ◽  
Stephen Huang ◽  
...  

Abstract Only a small subset of transcription factors (TFs) can act as pioneer factors; i.e. those that can 'open' otherwise 'closed' chromatin to facilitate assembly of TF complexes and co-factors to enable transcription. The KLF/SP family of TFs bind to a 9-10 bp consensus motif in DNA to activate or repress target gene expression. We have studied the potential for KLF1, which is essential for erythropoiesis, to provide a pioneering function in erythroid progentior cells. Previous ChIP-seq studies have shown KLF1 binds a few thousand enhancers and promoters to activate erythroid cell gene expression 1. It often binds near to other key erythroid TFs such as GATA1 and SCL/TAL1, so is likely to work in concert with them in some contexts. We have employed an inducible stable KLF1-ERTM construct to rescue gene expression and differentiation of Klf1-/- erythroid cell lines 2. We employed ChIP-seq, ATAC-seq and DNAse1 HS to show KLF1 can bind to closed sites in chromatin and induce an open state. We show this is essential for recruitment of the settler transcription, GATA1, at certain co-bound sites but not others. This pioneering function occurs at ~300 key erythroid enhancers and super-enhancers such the one at -26kb in the a-globin LCR and one within the body of the E2f2 gene 3 but rarely at promoters. We further show that two different neomorphic mutations in the KLF1 DNA-binding domain lead to ectopic pioneering (opening of closed chromatin) and aberrant gene activation 4. We generated a series of N-terminal deletions in KLF1 and employed ATAC-seq to map the domain/s within KLF1 responsible for the pioneering activity and show it is distinct from DNA-binding activity. The domain is responsible for bromodomain protein recruitment, the likely effector of chromatin remodelling. We have also examined whether KLF3, which acts as a transcription repressor via recruitment of the co-repressor, CtBP2, can force the closure of otherwise open chromatin 5. We find it cannot. Rather, KLF3 (and likely other members of this subclade) works via active recruitment of co-repressors rather than rendering chromatin inaccessible. This likely enables rapid reactivation of pioneered enhancers without the need to reprogram chromatin. This work has broad implications for how the KLF/SP family of TFs work in vivo to reprogram cells and direct differentiation. We will present data for such activity in non-erythroid cell systems. References:Tallack MR, Whitington T, Yuen WS, et al. A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Res. 2010;20(8):1052-1063.Coghill E, Eccleston S, Fox V, et al. Erythroid Kruppel-like factor (EKLF) coordinates erythroid cell proliferation and hemoglobinization in cell lines derived from EKLF null mice. Blood. 2001;97(6):1861-1868.Tallack MR, Keys JR, Humbert PO, Perkins AC. EKLF/KLF1 controls cell cycle entry via direct regulation of E2f2. J Biol Chem. 2009;284(31):20966-20974.Gillinder KR, Ilsley MD, Nebor D, et al. Promiscuous DNA-binding of a mutant zinc finger protein corrupts the transcriptome and diminishes cell viability. Nucleic Acids Res. 2017;45(3):1130-1143.Turner J, Crossley M. Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. Embo J. 1998;17(17):5129-5140. Disclosures Perkins: Novartis Oncology: Honoraria.


2019 ◽  
Author(s):  
Pengfei Dong ◽  
Xiaoyu Tu ◽  
Haoxuan Li ◽  
Jianhua Zhang ◽  
Donald Grierson ◽  
...  

AbstractChromatins are not randomly packaged in the nucleus and their organization plays important roles in transcription regulation. Usingin situHi-C, we have compared the 3D chromatin architectures of rice mesophyll and endosperm, foxtail millet bundle sheath and mesophyll, and maize bundle sheath, mesophyll and endosperm tissues. We have also profiled their DNA methylation, open chromatin, histone modification and gene expression to investigate whether chromatin structural dynamics are associated with epigenome features changes. We found that plant global A/B compartment partitions are stable across tissues, while local A/B compartment has tissue-specific dynamic that is associated with differential gene expression. Plant domains are largely stable across tissues, while rare domain border changes are often associated with gene activation. Genes inside plant domains are not conserved across species, and lack significant co-expression behavior unlike those in mammalian cells. When comparing synteny gene pairs, we found those maize genes involved in gene island chromatin loops have shorter genomic distances in smaller genomes without gene island loops such as rice and foxtail millet, suggesting that they have conserved functions. Our study revealed that the 3D configuration of the plant chromatin is also complex and dynamic with unique features that need to be further examined.


Author(s):  
Ann Rose Bright ◽  
Siebe van Genesen ◽  
Qingqing Li ◽  
Simon J. van Heeringen ◽  
Alexia Grasso ◽  
...  

ABSTRACTDuring gastrulation, mesoderm is induced in pluripotent cells, concomitant with dorsal-ventral patterning and establishing of the dorsal axis. How transcription factors operate within the constraints of chromatin accessibility to mediate these processes is not well-understood. We applied chromatin accessibility and single cell transcriptome analyses to explore the emergence of heterogeneity and underlying gene-regulatory mechanisms during early gastrulation in Xenopus. ATAC-sequencing of pluripotent animal cap cells revealed a state of open chromatin of transcriptionally inactive lineage-restricted genes, whereas chromatin accessibility in dorsal marginal zone cells more closely reflected the transcriptional activity of genes. We characterized single cell trajectories in animal cap and dorsal marginal zone in early gastrula embryos, and inferred the activity of transcription factors in single cell clusters by integrating chromatin accessibility and single cell RNA-sequencing. We tested the activity of organizer-expressed transcription factors in mesoderm-competent animal cap cells and found combinatorial effects of these factors on organizer gene expression. In particular the combination of Foxb1 and Eomes induced a gene expression profile that mimicked those observed in head and trunk organizer single cell clusters. In addition, genes induced by Eomes, Otx2 or the Irx3-Otx2 combination, were enriched for promoters with maternally regulated H3K4me3 modifications, whereas promoters selectively induced by Lhx8 were marked more frequently by zygotically controlled H3K4me3. Our results show that combinatorial activity of zygotically expressed transcription factors acts on maternally-regulated accessible chromatin to induce organizer gene expression.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1189-1189
Author(s):  
Jun Odawara ◽  
Kohta Miyawaki ◽  
Junichiro Yuda ◽  
Masayasu Hayashi ◽  
Kazumitsu Maehara ◽  
...  

Abstract Cell differentiation is achieved by sequential gene expression. Late differentiation marker genes are already regulated at the chromatin level prior to differentiation in embryonic stem cells and many cell line models. Therefore, we hypothesized that ‘stem-ness’ of hematopoietic stem/progenitor cells (HSPCs) are programmed by epigenetic mechanisms and attempted to reveal the molecular mechanisms in hematopoietic gene expression. Histone H3 molecule, which is one of the most basic components of chromatin, has at least three variants: H3.1, H3.2, and H3.3. Previous studies have shown that one of the H3 variants, H3.3, was consistent with open chromatin structure. Here we found that the incorporation of histone variant H3.3 initiates on hematopoietic genes in HSPCs prior to differentiation. HSPC fractions were purified from C57BL/6J mouse bone marrow, and chromatin immunoprecipitation sequencing (ChIPSeq) analysis was performed using newly-established monoclonal antibodies that specifically recognize endogenous H3.3. Although previous conventional studies have demonstrated that H3.3 deposition dominantly occurred in the “gene body”, our sensitive ChIPSeq analysis revealed that more than half of the H3.3 existed in the inter-genic regions around hematopoietic genes. The region of H3.3 incorporation changed during differentiation, i.e., virtually all genes were marked with H3.3 in embryonic stem cells, while all hematopoietic genes were marked with H3.3 in LSK, and more lineage specific genes were marked when cells are differentiated. Furthermore, our analysis visualized that within the regions incorporated with H3.3, transcriptionally active regions marked by H3K4me3 and repressed regions marked by H3K27me3 are mutually exclusive. These data suggest that in hematopoietic differentiation, H3.3 incorporation initiates around relatively wide ranges of hematopoietic genes, and then either of active or repressive histone modification sequentially occurs. Interestingly, in leukemic cells, such selective H3.3 incorporation appeared to be disorganized. To identify factors that induce H3.3 incorporation defect in leukemic cells, we used a public database provided by the ENCODE project. We have constructed a system to manage all these datasets and to comprehensively explore the factors closely related to H3.3. Interestingly, correlations of our H3.3 ChIPSeq data with the ENCODE transcription factors’ binding site data were significantly different between analyses of AML and normal cells. By this approach, we identified hematopoietic transcription factors such as CEBPB and YY1 were associated with impaired H3.3 incorporation in AML. In addition, by comparing these transcription factors and single nucleotide variants (SNVs) obtained from Exome-Sequence, we found links between these transcription factors and particular SNVs in common pathways. These data suggest that this H3.3 ChIPSeq analysis should also be useful to extract oncogenic variants from many SNVs obtained by conventional Exome-Sequence analysis. Disclosures: No relevant conflicts of interest to declare.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Jeffrey L Hansen ◽  
Kaiser J Loell ◽  
Barak A Cohen

The Pioneer Factor Hypothesis (PFH) states that pioneer factors (PFs) are a subclass of transcription factors (TFs) that bind to and open inaccessible sites and then recruit non-pioneer factors (nonPFs) that activate batteries of silent genes. The PFH predicts that ectopic gene activation requires the sequential activity of qualitatively different TFs. We tested the PFH by expressing the endodermal PF FOXA1 and nonPF HNF4A in K562 lymphoblast cells. While co-expression of FOXA1 and HNF4A activated a burst of endoderm-specific gene expression, we found no evidence for a functional distinction between these two TFs. When expressed independently, both TFs bound and opened inaccessible sites, activated endodermal genes, and 'pioneered' for each other, although FOXA1 required fewer copies of its motif for binding. A subset of targets required both TFs, but the predominant mode of action at these targets did not conform to the sequential activity predicted by the PFH. From these results we hypothesize an alternative to the PFH where 'pioneer activity' depends not on categorically different TFs but rather on the affinity of interaction between TF and DNA.


Sign in / Sign up

Export Citation Format

Share Document