scholarly journals The Large-Scale Variations of Quasi-Stellar Objects

1972 ◽  
Vol 44 ◽  
pp. 283-284 ◽  
Author(s):  
W. H. McCrea

The proposition for consideration is:A QSO is an approximately standard object: it has an approximately standard history consisting mainly of an increase of optical brightness to a very high peak, and a subsequent decline. I suggest that the history has a relevant duration of about 106 yr, and that the total increase of brightness is by a factor about 103, while the mean brightness is of the order of 1% of the peak brightness (so that the peak is rather sharp).

2019 ◽  
Vol 627 ◽  
pp. A27 ◽  
Author(s):  
Jin-Long Xu ◽  
Annie Zavagno ◽  
Naiping Yu ◽  
Xiao-Lan Liu ◽  
Ye Xu ◽  
...  

Aims. We aim to investigate the impact of the ionized radiation from the M 16 H II region on the surrounding molecular cloud and on its hosted star formation. Methods. To present comprehensive multi-wavelength observations towards the M 16 H II region, we used new CO data and existing infrared, optical, and submillimeter data. The 12CO J = 1−0, 13CO J = 1−0, and C18O J = 1−0 data were obtained with the Purple Mountain Observatory (PMO) 13.7 m radio telescope. To trace massive clumps and extract young stellar objects (YSOs) associated with the M 16 H II region, we used the ATLASGAL and GLIMPSE I catalogs, respectively. Results. From CO data, we discern a large-scale filament with three velocity components. Because these three components overlap with each other in both velocity and space, the filament may be made of three layers. The M 16 ionized gas interacts with the large-scale filament and has reshaped its structure. In the large-scale filament, we find 51 compact cores from the ATLASGAL catalog, 20 of them being quiescent. The mean excitation temperature of these cores is 22.5 K, while this is 22.2 K for the quiescent cores. This high temperature observed for the quiescent cores suggests that the cores may be heated by M 16 and do not experience internal heating from sources in the cores. Through the relationship between the mass and radius of these cores, we obtain that 45% of all the cores are massive enough to potentially form massive stars. Compared with the thermal motion, the turbulence created by the nonthermal motion is responsible for the core formation. For the pillars observed towards M 16, the H II region may give rise to the strong turbulence.


1972 ◽  
Vol 44 ◽  
pp. 464-469
Author(s):  
Vahé Petrosian

The evolution of QSOs and the reality of their apparent cutoff for z > 2.3 is determined using their large scale redshift distribution. The contributions of QSRs to radio source counts are calculated on the basis of possible evolution of QSOs having z > 2.2.


Geosciences ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 343 ◽  
Author(s):  
Jogendra Sarma ◽  
Shukla Acharjee

The Brahmaputra River flows through Assam, India, for about 670 km along an alluvial valley as a wide braided river. The width of the river varies with time along its course. The braiding intensity of this river is estimated using the braiding index (BI) of Brice (1964), which also changes with space and time along the course of the river. Temporal changes of both width and BI have been studied using topographic maps of 1912–1928 and 1963–1975, and dry season satellite data of 1996, 2000, 2007 and 2009. The mean widths of the Brahmaputra River channel in Assam during 1912–1928, 1963–1975, 1996, 2000, 2007 and 2009 were 5949 m, 7455 m, 7505 m, 8008 m, 8308 m and 9012 m, respectively, confirming an overall increase in width with time. Both the width and variation of width are lowest in four short narrower segments of the river. Three of these segments represent hard points comprising gneissic rock, and one segment is on alluvium comprising cohesive clay. The increase in width is correlated to enormous sediment load produced by the great Assam earthquake of 1950 and large-scale deforestation in the Himalayas. The mean BIs for the Brahmaputra for 1963–1975, 1996, 2000, 2007 and 2009 were 8.59, 8.43, 6.67, 6.58 and 7.70, respectively, indicating in general a decreasing trend up to 2007. The BI showed low variation at the four narrow segments where there is also a minimum variation of the channel width. The BI has increased significantly in the upstream part of the river. Very high fluctuation of discharge (17,000 m 3 / s − 1 in 24 h) and high sediment loads of the Brahmaputra (daily mean sediment discharge of 2.0 million tonnes during monsoon), erodible alluvial banks and high width/depth ratios are the main causes of development of braiding. The interrelationship between channel width and BI of the Brahmaputra shows a positive correlation, indicating an increase in BI with increasing channel width.


1990 ◽  
Vol 43 (2) ◽  
pp. 251 ◽  
Author(s):  
BJ Boyle

Recent advances in instrumentation, particularly at the Anglo-Australian Telescope, have greatly increased the number of quaSi-stellar objects (QSOs) identified at faint magnitudes (B> 20 mag) and high redshifts (z> 2.2). As a result, significant progress has been made in the study of QSO clustering and evolution in the last two to three years. This paper reviews the results obtained and discusses their relevance to models of galaxy formation and the large-scale structure of the universe.


1988 ◽  
Vol 59 (01) ◽  
pp. 029-033 ◽  
Author(s):  
K G Chamberlain ◽  
D G Penington

SummaryNormal human platelets have been separated according to density on continuous Percoll gradients and the platelet distribution divided into five fractions containing approximately equal numbers of platelets. The mean volumes and protein contents of the platelets in each fraction were found to correlate positively with density while the protein concentration did not differ significantly between the fractions. Four mitochondrial enzymes (monoamine oxidase, glutamate dehydrogenase, cytochrome oxidase and NADP-dependent isocitrate dehydrogenase) were assayed and their activities per unit volume were found to increase in a very similar monotonie fashion with platelet density. When MAO and GDH were assayed on the same set of density fractions the correlation between the two activities was very high (r = 0.94–1.00, p <0.001) and a similar close correlation was found between MAO and ICDH. The results support the hypothesis that high density platelets either have a higher concentration of mitochondria or have larger mitochondria than low density platelets.


2004 ◽  
Vol 155 (5) ◽  
pp. 142-145 ◽  
Author(s):  
Claudio Defila

The record-breaking heatwave of 2003 also had an impact on the vegetation in Switzerland. To examine its influences seven phenological late spring and summer phases were evaluated together with six phases in the autumn from a selection of stations. 30% of the 122 chosen phenological time series in late spring and summer phases set a new record (earliest arrival). The proportion of very early arrivals is very high and the mean deviation from the norm is between 10 and 20 days. The situation was less extreme in autumn, where 20% of the 103 time series chosen set a new record. The majority of the phenological arrivals were found in the class «normal» but the class«very early» is still well represented. The mean precocity lies between five and twenty days. As far as the leaf shedding of the beech is concerned, there was even a slight delay of around six days. The evaluation serves to show that the heatwave of 2003 strongly influenced the phenological events of summer and spring.


1991 ◽  
Vol 56 ◽  
Author(s):  
B. Meuleman

After  its introduction at the start of this century, the Corsican pine has become  an important forest tree in Flanders (Belgium). The total area covered by  Corsican pine is about 11.000 ha. Due to climatological factors it is  virtually absent from the Walloon part of Belgium. Despite the crisis in 1984  - 1986, practical experiences with its vitality and disease resistance are  generally positive. Compared to Scots pine which is native to Belgium, its  productivity and insensitivity for insect pests is large.     To quantify the productivity of Corsican pine, a growth table was  constructed using a method developed by PALM and DAGNELIE. It was based on  data from 321 temporarily and 80 permanent plots distributed over Flanders.  Five yield classes were distinguished according to dominant height at 50  years. For each yield class, a series of tables as a function of treatment  was constructed. Treatments were characterized by the mean annual  circumference increment.     These tables allow to predict the growth of Corsican pines. Such  predictions for the whole range of species are necessary for the development  of a good forestry policy and for timber industries. The tables also provide  information for any given Corsican pine stand that is helpful in practice:  expected productivity, stand density, determination of the felling quantum.      The data show that the productivity of Corsican pine is very high. The very  early culmination of the current annual volume increment and the rather  constant level of the mean annual volume increment after culmination are  interesting new findings. It is also shown that it is possible to work with  long rotation periods. This offers good opportunities for the production of  high quality wood and is also important for the social and ecological role of  the forest.     Productivity is lowest on very dry and sandy soils. A high productivity on  moderately dry sand and loamy sand soils and loamy soils make the Corsican  pine one of the most valuable tree species for the Kempen in Flanders.  Although productivity is very high on well drained sandy loam and loam soils,  plantation of Corsican pine on these locations is not advised.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1021
Author(s):  
Bernhard Dorweiler ◽  
Pia Elisabeth Baqué ◽  
Rayan Chaban ◽  
Ahmed Ghazy ◽  
Oroa Salem

As comparative data on the precision of 3D-printed anatomical models are sparse, the aim of this study was to evaluate the accuracy of 3D-printed models of vascular anatomy generated by two commonly used printing technologies. Thirty-five 3D models of large (aortic, wall thickness of 2 mm, n = 30) and small (coronary, wall thickness of 1.25 mm, n = 5) vessels printed with fused deposition modeling (FDM) (rigid, n = 20) and PolyJet (flexible, n = 15) technology were subjected to high-resolution CT scans. From the resulting DICOM (Digital Imaging and Communications in Medicine) dataset, an STL file was generated and wall thickness as well as surface congruency were compared with the original STL file using dedicated 3D engineering software. The mean wall thickness for the large-scale aortic models was 2.11 µm (+5%), and 1.26 µm (+0.8%) for the coronary models, resulting in an overall mean wall thickness of +5% for all 35 3D models when compared to the original STL file. The mean surface deviation was found to be +120 µm for all models, with +100 µm for the aortic and +180 µm for the coronary 3D models, respectively. Both printing technologies were found to conform with the currently set standards of accuracy (<1 mm), demonstrating that accurate 3D models of large and small vessel anatomy can be generated by both FDM and PolyJet printing technology using rigid and flexible polymers.


Sports ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Atsushi Aoyagi ◽  
Keisuke Ishikura ◽  
Yoshiharu Nabekura

The aim of this study was to examine the exercise intensity during the swimming, cycling, and running legs of nondraft legal, Olympic-distance triathlons in well-trained, age-group triathletes. Seventeen male triathletes completed incremental swimming, cycling, and running tests to exhaustion. Heart rate (HR) and workload corresponding to aerobic and anaerobic thresholds, maximal workloads, and maximal HR (HRmax) in each exercise mode were analyzed. HR and workload were monitored throughout the race. The intensity distributions in three HR zones for each discipline and five workload zones in cycling and running were quantified. The subjects were then assigned to a fast or slow group based on the total race time (range, 2 h 07 min–2 h 41 min). The mean percentages of HRmax in the swimming, cycling, and running legs were 89.8% ± 3.7%, 91.1% ± 4.4%, and 90.7% ± 5.1%, respectively, for all participants. The mean percentage of HRmax and intensity distributions during the swimming and cycling legs were similar between groups. In the running leg, the faster group spent relatively more time above HR at anaerobic threshold (AnT) and between workload at AnT and maximal workload. In conclusion, well-trained male triathletes performed at very high intensity throughout a nondraft legal, Olympic-distance triathlon race, and sustaining higher intensity during running might play a role in the success of these athletes.


2021 ◽  
Vol 503 (1) ◽  
pp. 270-291
Author(s):  
F Navarete ◽  
A Damineli ◽  
J E Steiner ◽  
R D Blum

ABSTRACT W33A is a well-known example of a high-mass young stellar object showing evidence of a circumstellar disc. We revisited the K-band NIFS/Gemini North observations of the W33A protostar using principal components analysis tomography and additional post-processing routines. Our results indicate the presence of a compact rotating disc based on the kinematics of the CO absorption features. The position–velocity diagram shows that the disc exhibits a rotation curve with velocities that rapidly decrease for radii larger than 0.1 arcsec (∼250 au) from the central source, suggesting a structure about four times more compact than previously reported. We derived a dynamical mass of 10.0$^{+4.1}_{-2.2}$ $\rm {M}_\odot$ for the ‘disc + protostar’ system, about ∼33 per cent smaller than previously reported, but still compatible with high-mass protostar status. A relatively compact H2 wind was identified at the base of the large-scale outflow of W33A, with a mean visual extinction of ∼63 mag. By taking advantage of supplementary near-infrared maps, we identified at least two other point-like objects driving extended structures in the vicinity of W33A, suggesting that multiple active protostars are located within the cloud. The closest object (Source B) was also identified in the NIFS field of view as a faint point-like object at a projected distance of ∼7000 au from W33A, powering extended K-band continuum emission detected in the same field. Another source (Source C) is driving a bipolar $\rm {H}_2$ jet aligned perpendicular to the rotation axis of W33A.


Sign in / Sign up

Export Citation Format

Share Document