scholarly journals Multispectral Imaging and p-XRF for the Non-Invasive Characterization of the Anonymous Devotional Painting ‘Maria Santissima delle Grazie’ from Mirabella Imbáccari (Sicily, Italy)

Heritage ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 2320-2336
Author(s):  
Antonella Privitera ◽  
Maria Francesca Alberghina ◽  
Elèna Privitera ◽  
Salvatore Schiavone

This work presents the results of the in situ, non-invasive diagnostic investigations performed on the canvas oil painting depicting Madonna and Child, venerated as ‘Maria Santissima delle Grazie’ by the local religious community. The work of art (72 cm × 175 cm) is located on the high altar of the main Church in Mirabella Imbáccari, near Catania (Sicily, Italy). The painter is anonymous, and the supposed dating is the late eighteenth century. Although the painting has never been studied before, it has been attributed to a Sicilian workshop in the literature, raising the doubts of the art historian who conducted this study and who hypothesized a Neapolitan manufacture. Furthermore, due to the good conservation state detected by a macroscopic examination, doubts also arose about dating. To shed light on these aspects, a technical-scientific examination proved necessary. Multispectral imaging techniques (IR Reflectography, UV-induced visible Fluorescence, X-ray) are carried out for the study of the execution technique, the identification of underlying remakes, sketch drawing and the evaluation of the conservation conditions. XRF spectrometry analysis is performed for the identification of the chemical elements constituting the pigments (inorganic chromophores). The diagnostic results allowed this research to confirm the dating suggested by the historical-stylistic knowledge and to highlight new technical peculiarities supporting the attribution to a Neapolitan workshop.

Author(s):  
J. Liu ◽  
M. Pan ◽  
G. E. Spinnler

Small metal particles have peculiar chemical and physical properties as compared to bulk materials. They are especially important in catalysis since metal particles are common constituents of supported catalysts. The structural characterization of small particles is of primary importance for the understanding of structure-catalytic activity relationships. The shape and size of metal particles larger than approximately 5 nm in diameter can be determined by several imaging techniques. It is difficult, however, to deduce the shape of smaller metal particles. Coherent electron nanodiffraction (CEND) patterns from nano particles contain information about the particle size, shape, structure and defects etc. As part of an on-going program of STEM characterization of supported catalysts we report some preliminary results of CEND study of Ag nano particles, deposited in situ in a UHV STEM instrument, and compare the experimental results with full dynamical simulations in order to extract information about the shape of Ag nano particles.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3645
Author(s):  
Isabel Theresa Schobert ◽  
Lynn Jeanette Savic

With the increasing understanding of resistance mechanisms mediated by the metabolic reprogramming in cancer cells, there is a growing clinical interest in imaging technologies that allow for the non-invasive characterization of tumor metabolism and the interactions of cancer cells with the tumor microenvironment (TME) mediated through tumor metabolism. Specifically, tumor glycolysis and subsequent tissue acidosis in the realms of the Warburg effect may promote an immunosuppressive TME, causing a substantial barrier to the clinical efficacy of numerous immuno-oncologic treatments. Thus, imaging the varying individual compositions of the TME may provide a more accurate characterization of the individual tumor. This approach can help to identify the most suitable therapy for each individual patient and design new targeted treatment strategies that disable resistance mechanisms in liver cancer. This review article focuses on non-invasive positron-emission tomography (PET)- and MR-based imaging techniques that aim to visualize the crosstalk between tumor cells and their microenvironment in liver cancer mediated by tumor metabolism.


1993 ◽  
Vol 318 ◽  
Author(s):  
Q. Jiang ◽  
A. Chan ◽  
Y.-L. He ◽  
G.-C. Wang

ABSTRACTThe growth and chemical intermixing of submonolayer and a few monolayer thick Fe films on a Au(001) surface was studied by High Resolution Low Energy Electron Diffraction (HRLEED) technique. Through the analysis of the energy dependent angular profiles as a function of time, we obtained the distribution of islands and distribution of spacings during submonolayer growth. The interference of electron waves from different chemical elements in terraces at different heights in the surface contributes to the background intensity and broadening in the angular profiles of diffraction beams. A subsurface Fe capped by Au islands as a result of atomic place exchange was observed at the initial stage of monolayer growth. From the energy dependent angular profiles as a function of temperature, we determine the quantitative change of inhomogeneity length (∼20 Å) at the interface of ultrathin films at elevated temperatures due to intermixing.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2874
Author(s):  
Hengfeng Yuan ◽  
Wen Jiang ◽  
Yuanxin Chen ◽  
Betty Kim

Ischemic injuries and local hypoxia can result in osteocytes dysfunction and play a key role in the pathogenesis of avascular osteonecrosis. Conventional imaging techniques including magnetic resonance imaging (MRI) and computed tomography (CT) can reveal structural and functional changes within bony anatomy; however, characterization of osteocyte behavioral dynamics in the setting of osteonecrosis at the single cell resolution is limited. Here, we demonstrate an optical approach to study real-time osteocyte functions in vivo. Using nicotinamide adenine dinucleotide (NADH) as a biomarker for metabolic dynamics in osteocytes, we showed that NADH level within osteocytes transiently increase significantly after local ischemia through non-invasive photo-induced thrombosis of afferent arterioles followed by a steady decline. Our study presents a non-invasive optical approach to study osteocyte behavior through the modulation of local environmental conditions. Thus it provides a powerful toolkit to study cellular processes involved in bone pathologies in vivo.


Heritage ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 858-874
Author(s):  
Susanna Bracci ◽  
Donata Magrini ◽  
Rachele Manganelli del Fà ◽  
Oana Adriana Cuzman ◽  
Barbara Mazzei

The Lot Sarcophagus is one of the most relevant funerary sculptures of late antiquity (mid-4th century AC). Some of the remarkable aspects are the following (i) it is still preserved in situ; (ii) most of the carved scenes are rarities or unicum; (iii) not all the sculpture work has been completed, which allows us to analyse the executive process; (iv) many traces of polychromy have remained. This paper is focused on the characterization of the residual polychromy by using in-situ non-invasive techniques. Furthermore, few micro samples were taken, to be analysed in laboratory to study the composition of some deposits and to define if a preparatory layer was present under the coloured layer. The data showed that the very rich polychromy of the Lot Sarcophagus was made of Egyptian blue, yellow ochre, and three different types of red: two inorganics (red ochre and cinnabar), and one organic-based (madder lake). Furthermore, some decorations, completely vanished and no longer visible to the naked eye, have been rediscovered, also providing details on the construction phases. During the project, the 3D model of the sarcophagus was acquired, which afterwards was used to map the results of the diagnostic campaign.


2013 ◽  
Vol 53 (1) ◽  
pp. 184-188 ◽  
Author(s):  
Yu Shrike Zhang ◽  
Xin Cai ◽  
Junjie Yao ◽  
Wenxin Xing ◽  
Lihong V. Wang ◽  
...  

2013 ◽  
Vol 126 (1) ◽  
pp. 188-192 ◽  
Author(s):  
Yu Shrike Zhang ◽  
Xin Cai ◽  
Junjie Yao ◽  
Wenxin Xing ◽  
Lihong V. Wang ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Edgar Casanova-González ◽  
Miguel Ángel Maynez-Rojas ◽  
Alejandro Mitrani ◽  
Isaac Rangel-Chávez ◽  
María Angélica García-Bucio ◽  
...  

Abstract Almost three hundred Spanish colonial missions—or their remains—are scattered over the vast state of Chihuahua in northern Mexico. A few of them still display painted decorations on the wood ceilings and walls. The decorated areas vary greatly, from the whole ceiling of the main aisle to just a few square meters in a lateral chapel, and so does the conservation state of the paintings. In this context, the information regarding the paintings’ composition plays a key role in the restoration and conservation processes. For the gathering of such information, we propose a combined methodology for a fast, non-destructive and non-invasive characterization of such paintings with a minimum of techniques. This methodology includes false color infrared imaging as a first approach to determine the composition of large areas of the paintings and the homogeneity of the materials used in the painted areas, followed by small area analysis by X-ray fluorescence and fiber-optics reflectance spectroscopy. This methodology was applied to characterize the elemental and molecular composition of the decorations for four missions in Chihuahua in a fast and specific manner, revealing the use of a mix of mineral and organic materials including indigo and cochineal, and detecting differences between the missions. The methodology presented here can be easily applied for the study of a wider number of missions in Chihuahua and other regions to provide outstanding information of materials, pictorial techniques and deterioration conditions.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Chiara Grazia ◽  
David Buti ◽  
Anna Amat ◽  
Francesca Rosi ◽  
Aldo Romani ◽  
...  

AbstractMaya blue is a hybrid pigment where an organic component, indigo, is incorporated in a porous clay. Despite its widespread use in the Mesoamerican artistic production and numerous studies devoted to understand the type of interactions between indigo and the host framework, its technology has not been completely unravelled yet. In this study portable non-invasive UV–vis reflection spectroscopy is proposed as a robust method for in situ investigation of Maya blue pigments. Laboratory mock-ups of powder Maya blue have been prepared employing different synthesis procedures (varying the nature of: clays, indigo–clay ratios, heating temperatures and time). The goodness of the prepared Maya blue samples—namely the occurrence of indigo–clay interactions—have been probed by micro-Raman spectroscopy and related UV–vis spectral markers have been identified. DFT calculations as well have been performed to deeply explain UV–vis profiles. The set of spectral markers have been finally exploited to interpret spectra recorded on Mesoamerican pictorial codices, through a multi-technique approach based on exploring the UV–Vis properties of the blue paint supported by the FT-IR vibrational study of the inorganic clays. The characterization of blue colours on pre-Hispanic and colonial Mesoamerican codices contribute to a better understanding of the compositional variability of these painting materials and to point out the existence of different technological traditions of colour preparation in ancient Mesoamerica.


Sign in / Sign up

Export Citation Format

Share Document