scholarly journals Transcriptome Co-Expression Network Analysis Identifies Key Genes and Regulators of Sweet Cherry Anthocyanin Biosynthesis

Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 123
Author(s):  
Haiying Yang ◽  
Changping Tian ◽  
Xiwen Li ◽  
Hansheng Gong ◽  
Aidi Zhang

Anthocyanin is the key factor that results in the attractive color of sweet cherry fruits. However, information regarding sweet cherry coloration and the potential mechanisms underlying anthocyanin biosynthesis is limited. In this study, we found that the anthocyanin accumulation varied in sweet cherry flesh and peel, while the anthocyanin content increased sharply in the dark red (DR) stage. Correlations between anthocyanin concentrations and RNA sequencing (RNA-seq), constructed with Weighted Gene Co-Expression Network Analysis (WGCNA), indicated that two structural genes (Pac4CL2, PacANS) and 11 transcription factors (PacbHLH13/74, PacDIV, PacERF109/115, PacGATA8, PacGT2, PacGTE10, PacMYB308, PacPosF21, and PacWRKY7) had similar expression patterns with the changes in anthocyanin content. Additionally, real-time PCR verified all of these gene expression patterns and revealed that PacANS exhibited the highest transcription level. In order to search for potential regulators for anthocyanin biosynthesis, a dual-luciferase assay was performed to investigate the regulatory activities of 11 transcription factors on the PacANS promoter. The results revealed that two novelty bHLHs, PacbHLH13 and PacbHLH74, can trans-activate the PacANS promoter and they might be the candidate genes for regulating anthocyanin synthesis in sweet cherry fruits. The present findings provide a novel viewpoint with regard to anthocyanin biosynthesis mechanisms and the regulatory transcriptional network of fruit coloration in sweet cherries.

2020 ◽  
Author(s):  
Nana Su ◽  
Ze Liu ◽  
Hui Chen ◽  
Mengyang Niu ◽  
Jin Cui

Abstract Background: The biosynthesis of anthocyanin in the hypocotyls of radish (Raphanus sativus L.) sprouts was enhanced by hemin in our preliminary experiments, but the underlying mechanism is unclear. Here, we found that NO (nitric oxide) exerted an essential role in Hemin-regulated anthocyanin biosynthesis, which was supported by the following results.Results: Hemin boosted anthocyanin as well as NO content. NO-scavenger cPTIO (carboxy-PTIO) significantly attenuated hemin-induced increase of anthocyanin content, transcripts of anthocyanin synthesis related genes and positive transcription factors, implying that NO played a prominent role during hemin-induced anthocyanin biosynthesis. Hemin specific inhibitor ZnPP (Zinc Protoporphyrin) strongly reduced anthocyanin content, while, NO donor SNP (Sodium Nitroprusside) addition considerably reversed this inhibition and by contrast, resulted in a significant increase in anthocyanin accumulation, closely paralleling the transcripts of structural genes and transcription factors. Moreover, NO content, NR (nitrate reductase) activity and expression level of NOA (nitric oxide associated factor) were up-regulated by Hemin. Conclusions:Those consequences indicated that NO might work downstream in Hemin-heightened anthocyanin accumulation in radish sprouts.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianyu Han ◽  
Wenlong Wu ◽  
Weilin Li

Blueberry (Vaccinium spp.) is a popular healthy fruit worldwide. The health value of blueberry is mainly because the fruit is rich in anthocyanins, which have a strong antioxidant capacity. However, because blueberry is a non-model plant, little is known about the structural and regulatory genes involved in anthocyanin synthesis in blueberries. Previous studies have found that spraying 1,000 mg/L abscisic acid at the late green stage of “Jersey” highbush blueberry fruits can increase the content of anthocyanins. In this experiment, the previous results were verified in “Brightwell” rabbiteye blueberry fruits. Based on the previous results, the anthocyanin accumulation process in blueberry can be divided into six stages from the late green stage to the mature stage, and the transcriptome was used to systematically analyze the blueberry anthocyanin synthesis process. Combined with data from previous studies on important transcription factors regulating anthocyanin synthesis in plants, phylogenetic trees were constructed to explore the key transcription factors during blueberry fruit ripening. The results showed that ABA increased the anthocyanin content of blueberry fruits during veraison. All structural genes and transcription factors (MYB, bHLH, and WD40) involved in the anthocyanin pathway were identified, and their spatiotemporal expression patterns were analyzed. The expression of CHS, CHI, DFR, and LDOX/ANS in ABA-treated fruits was higher in the last two stages of maturity, which was consistent with the change in the anthocyanin contents in fruits. In general, six MYB transcription factors, one bHLH transcription factor and four WD40 transcription factors were found to change significantly under treatment during fruit ripening. Among them, VcMYBA plays a major role in the regulation of anthocyanin synthesis in ABA signaling. This result preliminarily explained the mechanism by which ABA increases the anthocyanin content and improves the efficiency of the industrial use of blueberry anthocyanins.


2019 ◽  
Vol 70 (12) ◽  
pp. 3111-3123 ◽  
Author(s):  
Lili Xiang ◽  
Xiaofen Liu ◽  
Heng Li ◽  
Xueren Yin ◽  
Donald Grierson ◽  
...  

Abstract ‘Jimba’, a well-known white flowered chrysanthemum cultivar, occasionally and spontaneously produces red colored petals under natural cultivation, but there is little information about the molecular regulatory mechanism underlying this process. We analysed the expression patterns of 91 MYB transcription factors in ‘Jimba’ and ‘Turning red Jimba’ and identified an R3 MYB, CmMYB#7, whose expression was significantly decreased in ‘Turning red Jimba’ compared with ‘Jimba’, and confirmed it is a passive repressor of anthocyanin biosynthesis. CmMYB#7 competed with CmMYB6, which together with CmbHLH2 is an essential component of the anthocyanin activation complex, for interaction with CmbHLH2 through the bHLH binding site in the R3 MYB domain. This reduced binding of the CmMYB6–CmbHLH2 complex and inhibited its ability to activate CmDFR and CmUFGT promoters. Moreover, using transient expression assays we demonstrated that changes in the expression of CmMYB#7 accounted for alterations in anthocyanin content. Taken together, our findings illustrate that CmMYB#7 is a negative regulator of anthocyanin biosynthesis in chrysanthemum.


2020 ◽  
Author(s):  
Tianyu Han ◽  
Zhixiang Yan ◽  
Wenlong Wu ◽  
Weilin Li

Abstract Background: Blueberry(Vaccinium Spp)is a popular healthy fruit all over the world. The health value of blueberry is mainly due to the fact that blueberry is rich in anthocyanins, which have a strong antioxidant capacity. However, due to the fact that blueberry is a non model plant, little is known about the structural genes and regulatory genes involved in the anthocyanin synthesis of blueberries. Previous studies have found that spraying abscisic acid at the late green stage of blueberry fruit can increase the content of anthocyanins. Based on the former results, the anthocyanin accumulation process of blueberry can be divided into six stages from late green stage to mature stage to analyze the anthocyanin synthesis mechanism. In order to identify the important genes in the anthocyanin synthesis process of blueberry, the transcriptome analysis was conducted to explore the key genes in blueberry anthocyanin synthesis process.Results: The results showed that ABA could increase the anthocyanin content of blueberry fruits during the veraison. The effect of ABA on blueberry fruit development was systematically analyzed by KEGG and GO. All structural genes and transcription factors (MYB, bHLH and WD40) involved in anthocyanin pathway were identified and their spatiotemporal expression patterns were analyzed. The expression of CHS, CHI, DFR and LDOX / ANS in ABA treated fruits was higher in S5-S6, which was consistent with the change of anthocyanins in fruits.In general, six MYB transcription factors, one bHLH transcription factor and four WD40 transcription factors under treatment were found to have significant changes in transcripts during fruit ripening. Conclusions: Our results suggest that VcMYBA should play a major role in the regulation of anthocyanin synthesis in ABA signaling. This result preliminarily explained the mechanism of ABA increasing anthocyanin content and improves the efficiency of industrial use of blueberry anthocyanins.


2021 ◽  
Vol 22 (4) ◽  
pp. 1622
Author(s):  
Yanyan Wang ◽  
Zefeng Zhai ◽  
Yueting Sun ◽  
Chen Feng ◽  
Xiang Peng ◽  
...  

B-BOX proteins are zinc finger transcription factors that play important roles in plant growth, development, and abiotic stress responses. In this study, we identified 15 PavBBX genes in the genome database of sweet cherry. We systematically analyzed the gene structures, clustering characteristics, and expression patterns of these genes during fruit development and in response to light and various hormones. The PavBBX genes were divided into five subgroups. The promoter regions of the PavBBX genes contain cis-acting elements related to plant development, hormones, and stress. qRT-PCR revealed five upregulated and eight downregulated PavBBX genes during fruit development. In addition, PavBBX6, PavBBX9, and PavBBX11 were upregulated in response to light induction. We also found that ABA, BR, and GA3 contents significantly increased in response to light induction. Furthermore, the expression of several PavBBX genes was highly correlated with the expression of anthocyanin biosynthesis genes, light-responsive genes, and genes that function in multiple hormone signaling pathways. Some PavBBX genes were strongly induced by ABA, GA, and BR treatment. Notably, PavBBX6 and PavBBX9 responded to all three hormones. Taken together, BBX proteins likely play major roles in regulating anthocyanin biosynthesis in sweet cherry fruit by integrating light, ABA, GA, and BR signaling pathways.


2018 ◽  
Vol 44 (3) ◽  
pp. 289-298
Author(s):  
Bao-Jun Zhu ◽  
Qian Wang ◽  
Jing-Hui Wang ◽  
Lin-Lin Gao ◽  
Jing-Wen Zhang ◽  
...  

Abstract Objectives Rhodomyrtus tomentosa (Aiton.) Hassk. (R. tomentosa) is rich in nutrients and has multiple pharmacological applications. Anthocyanins confer color to the flowers and berries of R. tomentosa and provide protection against photodamage. The dihydroflavonol 4-reductase gene (DFR) and phenylalanine ammonialyase gene (PAL) are crucial for anthocyanin synthesis. Methods DFR and PAL transcript levels and anthocyanin content in the pigmented organs of R. tomentosa were investigated through qRT-PCR analysis and spectrophotometry, respectively. The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was selected as the reference gene for the normalization of DFR and PAL transcript levels. Results Transcript levels of DFR and PAL were higher in organs with vigorous metabolism than those in senescent organs. DFR and PAL transcript levels were up-regulated during the initial and middle-maturity periods of fruit. These expression patterns are consistent with fruit color development. The highest transcript levels of PAL and DFR were observed during the middle-maturity period or the red-fruit period. Conclusion During the late maturity period of R. tomentosa fruit, the transcript levels of the two genes were down-regulated even though anthocyanins were continuously accumulated, which was different from the accumulation of anthocyanins in some late mature fruits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gang Hu ◽  
Xiaomeng Yue ◽  
Jinxue Song ◽  
Guipei Xing ◽  
Jun Chen ◽  
...  

Soybean sprouts are a flavorful microgreen that can be eaten all year round and are widely favored in Southeast Asia. In this study, the regulatory mechanism of calcium on anthocyanin biosynthesis in soybean sprouts under blue light was investigated. The results showed that blue light, with a short wavelength, effectively induced anthocyanin accumulation in the hypocotyl of soybean sprout cultivar “Dongnong 690.” Calcium supplementation further enhanced anthocyanin content, which was obviously inhibited by LaCl3 and neomycin treatment. Moreover, exogenous calcium changed the metabolism of anthocyanins, and seven anthocyanin compounds were detected. The trend of calcium fluorescence intensity in hypocotyl cells, as well as that of the inositol 1,4,5-trisphosphate and calmodulin content, was consistent with that of anthocyanins content. Specific spatial distribution patterns of calcium antimonate precipitation were observed in the ultrastructure of hypocotyl cells under different conditions. Furthermore, calcium application upregulated the expression of genes related to anthocyanin biosynthesis, and calcium inhibitors suppressed these genes. Finally, transcriptomics was performed to gain global insights into the molecular regulation mechanism of calcium-associated anthocyanin production. Genes from the flavonoid biosynthesis pathway were distinctly enriched among the differentially expressed genes, and weighted gene co-expression network analysis showed that two MYBs were related to the accumulation of anthocyanins. These results indicated that calcium released from apoplast and intracellular stores in specific spatial-temporal features promote blue light-induced anthocyanin accumulation by upregulation of the expression of genes related to anthocyanin synthesis of “Dongnong 690” hypocotyl. The findings deepen the understanding of the calcium regulation mechanism of blue light-induced anthocyanin accumulation in soybean sprouts, which will help growers produce high-quality foods beneficial for human health.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhao ◽  
Yonghui Liu ◽  
Lin Li ◽  
Haijun Meng ◽  
Ying Yang ◽  
...  

Basic helix-loop-helix (bHLH) proteins are transcription factors (TFs) that have been shown to regulate anthocyanin biosynthesis in many plant species. However, the bHLH gene family in walnut (Juglans regia L.) has not yet been reported. In this study, 102 bHLH genes were identified in the walnut genome and were classified into 15 subfamilies according to sequence similarity and phylogenetic relationships. The gene structure, conserved domains, and chromosome location of the genes were analyzed by bioinformatic methods. Gene duplication analyses revealed that 42 JrbHLHs were involved in the expansion of the walnut bHLH gene family. We also characterized cis-regulatory elements of these genes and performed Gene Ontology enrichment analysis of gene functions, and examined protein-protein interactions. Four candidate genes (JrEGL1a, JrEGL1b, JrbHLHA1, and JrbHLHA2) were found to have high homology to genes encoding bHLH TFs involved in anthocyanin biosynthesis in other plants. RNA sequencing revealed tissue- and developmental stage-specific expression profiles and distinct expression patterns of JrbHLHs according to phenotype (red vs. green leaves) and developmental stage in red walnut hybrid progeny, which were confirmed by quantitative real-time PCR analysis. All four of the candidate JrbHLH proteins localized to the nucleus, consistent with a TF function. These results provide a basis for the functional characterization of bHLH genes and investigations on the molecular mechanisms of anthocyanin biosynthesis in red walnut.


Genome ◽  
2018 ◽  
Vol 61 (2) ◽  
pp. 111-120 ◽  
Author(s):  
Si-Won Jin ◽  
Md Abdur Rahim ◽  
Hoy-Taek Kim ◽  
Jong-In Park ◽  
Jong-Goo Kang ◽  
...  

Ornamental cabbage (Brassica oleracea var. acephala) is a winter-grown and important decorative plant of the family Brassicaceae, which displays an exceptional coloration in the central leaves of the rosette. Anthocyanins are the key determinant of the red, purple, and blue colors of vegetative and reproductive parts of many plant species including ornamental cabbage. Total anthocyanin content was measured spectrophotometrically, and the highest anthocyanin content was detected in the red followed by light-red and white ornamental cabbage lines. Anthocyanin biosynthesis is controlled by members of three different transcription factor (TF) families, such as MYB, basic helix-loop-helix (bHLH), and WD40 repeats (WDR), which function as a MBW complex. We identified three MYB, six bHLH, and one WDR TFs that regulate anthocyanin biosynthesis in ornamental cabbage. The expression of the regulatory and biosynthetic genes for anthocyanin synthesis was determined by qPCR. The tested structural genes of the anthocyanin pathway were shown to be up-regulated in the red followed by light-red ornamental cabbage lines; however, the expression levels of the late biosynthetic genes were barely detected in the white ornamental cabbage lines. Among the regulatory genes, BoPAP2 (MYB), BoTT8, BoEGL3.1, and BoMYC1.2 (bHLH), and BoTTG1 (WDR) were identified as candidates for the regulation of anthocyanin biosynthesis. This work could be useful for the breeding of novel colorful ornamental cabbage cultivars.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Yi Li ◽  
Huayin Li ◽  
Fengde Wang ◽  
Jingjuan Li ◽  
Yihui Zhang ◽  
...  

Anthocyanin in strawberries has a positive effect on fruit coloration. In this study, the role of exogenous hematin on anthocyanin biosynthesis was investigated. Our result showed that the white stage of strawberries treated with exogenous hematin had higher anthocyanin content, compared to the control group. Among all treatments, 5 μM of hematin was the optimal condition to promote color development. In order to explore the molecular mechanism of fruit coloring regulated by hematin, transcriptomes in the hematin- and non-hematin-treated fruit were analyzed. A large number of differentially expressed genes (DEGs) were identified in regulating anthocyanin synthesis, including the DEGs involved in anthocyanin biosynthesis, hormone signaling transduction, phytochrome signaling, starch and sucrose degradation, and transcriptional pathways. These regulatory networks may play an important role in regulating the color process of strawberries treated with hematin. In summary, exogenous hematin could promote fruit coloring by increasing anthocyanin content in the white stage of strawberries. Furthermore, transcriptome analysis suggests that hematin-promoted fruit coloring occurs through multiple related metabolic pathways, which provides valuable information for regulating fruit color via anthocyanin biosynthesis in strawberries.


Sign in / Sign up

Export Citation Format

Share Document