scholarly journals Mechanisms of Nitric Oxide in the Regulation of Chilling Stress Tolerance in Camellia sinensis

Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 410
Author(s):  
Yingzi Wang ◽  
Qin Yu ◽  
Yinhua Li ◽  
Juan Li ◽  
Jinhua Chen ◽  
...  

Tea [Camellia sinensis (L.)] plants are important economic crop in China. Chilling stress and freezing damages have seriously affected the quality of tea products that have been already regarded as the main restricting factors to industry’s development. Nitric oxide (NO) plays a crucial role in resistance of abiotic stresses. An experiment was conducted in an artificial climate chamber to study the effect of NO on tea plants grown under chilling stress (–2 °C) for 0, 6, 24, 48, and 72 h. Foliar application of sodium nitroprusside (SNP) at a rate of 500 μmol·L−1 was used as NO donor. The experiment contained two factors: the first was the foliar application with SNP or distilled water, and the scond one was the chilling (–2 °C) exposure time (0, 6, 24, 48, and 72 h). The effects of NO on membrane lipid peroxidation, osmotic adjustment substances, and antioxidant activity under cold stress were studied. In addition, the gene expression of CsICE1 and CsCBF1 in respond to NO addition were also investigated using real-time polymerase chain reaction (RT-PCR). The results show that foliar addition of NO (500 μmol·L−1 of SNP) reduce the relative conductivity of tea leaves, inhibits the elevated malondialdehyde content, promotes the accumulation of proline, soluble protein and sugar, and increases the superoxide dismutase, catalase activities, thereby alleviates the damage of cold stress on tea leaves. The CsICE1 expression in 500 μM SNP treatment was peaked at 24 h of low temperature stress, while it did not express at normal temperature. Therefore, the current study is considered a good scientific material in understanding how tea plants sense and defense the chilling stress and that plays an important role to improve the level of production and economic benefits. It is also provided significant theory bas to control chilling stress in tea plants.

2015 ◽  
Vol 10 (5) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Wei-Wei Deng ◽  
Min Li ◽  
Chen-Chen Gu ◽  
Da-Xiang Li ◽  
Lin-Long Ma ◽  
...  

Caffeine, a purine alkaloid, is a major secondary metabolite in tea leaves. The demand for low caffeine tea is increasing in recent years, especially for health reasons. We report a novel grafted tea material with low caffeine content. The grafted tea plant had Camellia sinensis as scions and C. oleifera as stocks. The content of purine alkaloids was determined in the leaves of one-year-old grafted tea plants by HPLC. We also characterized caffeine synthase (CS), a key enzyme involved in caffeine biosynthesis in tea plants, at the expression level. The expression patterns of CS were examined in grafted and control leaves by Western blot, using a self-prepared polyclonal antibody with high specificity and sensitivity. The expression of related genes ( TCS1, tea caffeine synthase gene, GenBank accession No. AB031280; sAMS, SAM synthetase gene, AJ277206; TIDH, IMP dehydrogenase gene, EU106658) in the caffeine biosynthetic pathway was investigated by qRT-PCR. HPLC showed that the caffeine content was only 38% as compared with the non-grafted tea leaves. Immunoblotting analysis showed that CS protein decreased by half in the leaves of grafted tea plants. qRT-PCR revealed no significant changes in the expression of two genes in the upstream pathway ( sAMS and TIDH), while the expression of TCS1 was greatly decreased (50%). Taken together, these data revealed that the low caffeine content in the grafted tea leaves is due to low TCS1 expression and CS protein accumulation.


2020 ◽  
Vol 21 (16) ◽  
pp. 5684 ◽  
Author(s):  
Xiaochen Zhou ◽  
Lanting Zeng ◽  
Yingjuan Chen ◽  
Xuewen Wang ◽  
Yinyin Liao ◽  
...  

In tea (Camellia sinensis) plants, polyphenols are the representative metabolites and play important roles during their growth. Among tea polyphenols, catechins are extensively studied, while very little attention has been paid to other polyphenols such as gallic acid (GA) that occur in tea leaves with relatively high content. In this study, GA was able to be transformed into methyl gallate (MG), suggesting that GA is not only a precursor of catechins, but also can be transformed into other metabolites in tea plants. GA content in tea leaves was higher than MG content—regardless of the cultivar, plucking month or leaf position. These two metabolites occurred with higher amounts in tender leaves. Using nonaqueous fractionation techniques, it was found that GA and MG were abundantly accumulated in peroxisome. In addition, GA and MG were found to have strong antifungal activity against two main tea plant diseases, Colletotrichum camelliae and Pseudopestalotiopsis camelliae-sinensis. The information will advance our understanding on formation and biologic functions of polyphenols in tea plants and also provide a good reference for studying in vivo occurrence of specialized metabolites in economic plants.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 915 ◽  
Author(s):  
Yingying Li ◽  
Qiuqiu Zhang ◽  
Lina Ou ◽  
Dezhong Ji ◽  
Tao Liu ◽  
...  

Cold stress caused by a low temperature is a significant threat to tea production. The application of chitosan oligosaccharide (COS) can alleviate the effect of low temperature stress on tea plants. However, how COS affects the cold stress signaling in tea plants is still unclear. In this study, we investigated the level of physiological indicators in tea leaves treated with COS, and then the molecular response to the cold stress of tea leaves treated with COS was analyzed by transcriptomics with RNA-Sequencing (RNA-Seq). The results show that the activity of superoxide dismutase (SOD) activity, peroxidase (POD) activity, content of chlorophyll and soluble sugar in tea leaves in COS-treated tea plant were significantly increased and that photosynthesis and carbon metabolism were enriched. Besides, our results suggest that COS may impact to the cold stress signaling via enhancing the photosynthesis and carbon process. Our research provides valuable information for the mechanisms of COS application in tea plants under cold stress.


2019 ◽  
Vol 20 (17) ◽  
pp. 4151 ◽  
Author(s):  
Xuewen Wang ◽  
Lanting Zeng ◽  
Yinyin Liao ◽  
Jianlong Li ◽  
Jinchi Tang ◽  
...  

Herbivore-induced plant volatiles (HIPVs) play important ecological roles in defense against stresses. In contrast to model plants, reports on HIPV formation and function in crops are limited. Tea (Camellia sinensis) is an important crop in China. α-Farnesene is a common HIPV produced in tea plants in response to different herbivore attacks. In this study, a C. sinensis α-farnesene synthase (CsAFS) was isolated, cloned, sequenced, and functionally characterized. The CsAFS recombinant protein produced in Escherichia coli was able to transform farnesyl diphosphate (FPP) into α-farnesene and also convert geranyl diphosphate (GPP) to β-ocimene in vitro. Furthermore, transient expression analysis in Nicotiana benthamiana plants indicated that CsAFS was located in the cytoplasm and could convert FPP to α-farnesene in plants. Wounding, to simulate herbivore damage, activated jasmonic acid (JA) formation, which significantly enhanced the CsAFS expression level and α-farnesene content. This suggested that herbivore-derived wounding induced α-farnesene formation in tea leaves. Furthermore, the emitted α-farnesene might act as a signal to activate antibacterial-related factors in neighboring undamaged tea leaves. This research advances our understanding of the formation and signaling roles of common HIPVs in crops such as tea plants.


2011 ◽  
Vol 378-379 ◽  
pp. 423-427 ◽  
Author(s):  
Hai Yan Li ◽  
Wan Zhong Zhang

Abscisic acid (ABA) and sodium nitroprusside (SNP) treatment significantly increased chilling tolerance in maize seedlings. ABA in combination with nitric oxide (NO) donor SNP further enhanced the ABA-induced chilling tolerance. But the addition of NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) nullified the increasing effect of SNP on chilling tolerance. In addition, the combination of ABA and PTIO decreased the ABA-induced chilling tolerance. Measurement of activities of superoxide dismutase (SOD) and catalase (CAT), hydrogen peroxide (H2O2) content and the level of lipid peroxidation (in terms of malondialdehyde) indicated that chilling stress induced an oxidative stress in maize seedlings. ABA treatment enabled maize seedlings to maintain higher SOD and CAT activities and lower level of H2O2 and lipid peroxidation under chilling stress. ABA in combination with SNP further enhanced the ABA-induced increase in SOD and CAT activities and lowered the chilling stress-induced lipid peroxidation in the ABA-treated seedlings. But the addition of PTIO scavenged the increasing effect of SNP. In addition, the combination of ABA and PTIO had a contrary effect with that of ABA and SNP. These results suggest that the ABA-induced chilling tolerance is mediated by NO, NO is involved in ABA-induced chilling tolerance by increasing activities of antioxidant enzymes and reduced endogenous H2O2 accumulation.


2018 ◽  
Vol 7 (4) ◽  
pp. 2119 ◽  
Author(s):  
Pranjal Pratim Das ◽  
Tapas Medhi

Endophytes are microorganisms presents within plant in asymptomatic manner and often act as a reservoir of novel bioactive secondary metabolites having antimicrobial, anti-insect and other beneficial properties. In absence of any reports on the presence of endophyte and their possible metabolic role in the process of infestation of tea plants (Camellia sinensis L.) by tea mosquito bug (Halopeltis theivora Waterhouse), the present study was undertaken to trace and isolate them from tea leaves for their molecular characterisation based on 16S rRNA sequencing. In this process, four endophytic bacteria have been identified as Brachybacterium sp. strain TMCS1, Bacillus pumilus strain TMCS2, Moraxella osloensis strain TMCS3 and Moraxella osloensis strain TMCS4 from the 2nd leaf of a young flash of C.   sinensis (TV22 clone) which will enable us to study their culturable properties and role as biocontrol agents.


2018 ◽  
Vol 143 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Lijian Liang ◽  
Yanming Deng ◽  
Xiaobo Sun ◽  
Xinping Jia ◽  
Jiale Su

Nitric oxide (NO) is well known for its multifaceted physiological roles as a signaling molecule in plants. Previous studies have indicated that exogenous application of NO may be useful for alleviating chilling injury (CI) in fruits and vegetables. However, the potential role and mechanism of NO in mitigating chilling stress in anthurium (Anthurium andraeanum) remain unclear. In this study, physiological and biochemical analysis were performed to investigate the effects of exogenous NO in alleviating CI in anthurium. Anthurium seedling plants were treated with the NO donor sodium nitroprusside (SNP) at four concentrations (0, 0.2, 0.4, and 0.8 mm) and stored at 12/5 °C (day/night) for 15 day. The results showed that exogenous SNP mitigated the adverse effects of chilling on anthurium, and the most effective concentration was 0.2 mm. In addition, NO effectively improved the CI index, malondialdehyde (MDA) content, electrolyte leakage, photochemical efficiency (Fv/Fm), and chlorophyll loss of anthurium during low temperatures. Pretreatment with SNP also increased the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX); the content of antioxidants including glutathione (GSH), ascorbic acid (AsA), and phenolics; and reduced the accumulation of hydrogen peroxide and O2−. SNP pretreatment at 0.2 mm also significantly promoted the accumulation of proline, increased the activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS), and reduced the activity of proline dehydrogenase (PDH), when compared with control (0 mm SNP→Chilling) under chilling stress. These results indicated that NO could enhance the chilling tolerance of anthurium by elicitation of an antioxidant response and proline accumulation for maintaining cell membrane integrity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuhua Wang ◽  
Fei Xiong ◽  
Shouhua Nong ◽  
Jieren Liao ◽  
Anqi Xing ◽  
...  

Author(s):  
Abdullah Al Mamun Sohag ◽  
Md Tahjib-Ul-Arif ◽  
Sonya Afrin ◽  
Md Kawsar Khan ◽  
Md. Abdul Hannan ◽  
...  

Being a chilling-sensitive staple crop, rice (Oryza sativa L.) is vulnerable to climate change. The competence of rice to withstand chilling stress should, therefore, be enhanced through technological tools. The present study employed chemical intervention like application of sodium nitroprusside (SNP) as nitric oxide (NO) donor and elucidated the underlying molecular mechanisms of NO-mediated chilling tolerance in rice. At germination stage, germination indicators were interrupted by chilling stress (5.0 ± 1.0°C for 8 h day‒1), while pretreatment with 100 μM SNP markedly improved the indicators. At seedling stage (14-day-old), chilling stress caused stunted growth with visible toxicity along with alteration of biochemical markers, for example, increase in oxidative stress markers (superoxide, hydrogen peroxide, and malondialdehyde) and osmolytes (total soluble sugar; proline and soluble protein content, SPC), and decrease in chlorophyll (Chl), relative water content (RWC), and antioxidants. However, NO application attenuated toxicity symptoms with improving growth performance which might be attributed to enhanced activities of antioxidants, mineral contents, Chl, RWC and SPC. Furthermore, principal component analysis indicated that water imbalance and increased oxidative damage were the main contributors to chilling injury, whereas NO-mediated mineral homeostasis and antioxidant defense were the critical determinants for chilling tolerance in rice. Collectively, our findings revealed that NO protects against chilling stress through valorizing cellular defense mechanisms, suggesting that exogenous application of NO could be a potential tool to evolve cold tolerance as well as climate resilience in rice.


Sign in / Sign up

Export Citation Format

Share Document