scholarly journals Evaluating Groundwater Flow Effects for Enhancement of Ground-Source Heat Pipes in the Case of the Toyohira River Alluvial Fan, Japan

Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 135
Author(s):  
Yoshikata Sakata ◽  
Johnson Chishimba ◽  
Masataka Mochizuki ◽  
Katsunori Nagano

The purpose of this study was to evaluate the potential enhancement of ground-source heat pipes by groundwater advection at two sites within an alluvial fan of Toyohira River, Sapporo. Two sites were selected: one in the fan toe, for negligible groundwater flow (Site 1), and the other in the apex for fast flows, the latter characterized by a specific discharge of 1.0 m/d from the losing river (Site 2). The evaporator section(s) of a single (double) heat pipe(s) was installed in a borehole at each site; the condenser section(s) on the ground was placed inside cooled brine at a set temperature, resulting in heat extraction under steady conditions. The single heat pipe experiments showed that the heat extraction rates ranged between 0.23 and 0.79 kW and were not clearly different at the two sites, considering some uncertainty. For double heat pipes, the heat extraction rates were unchanged at Site 1, but were about 146% higher at Site 2 compared to the single tests, due to groundwater advection. This study revealed that the number of ground-source heat pipes required could be reduced from three to two in areas near Site 2.

2011 ◽  
Vol 15 (3) ◽  
pp. 879-888 ◽  
Author(s):  
Rathinasamy Senthilkumar ◽  
Subaiah Vaidyanathan ◽  
Sivaramanb Balasubramanian

This paper discuses the use of self rewetting fluids in the heat pipe. In conventional heat pipes, the working fluid used has a negative surface-tension gradient with temperature. It is an unfavourable one and it decreases the heat transport between the evaporator section and the condenser section. Self rewetting fluids are dilute aqueous alcoholic solutions which have the number of carbon atoms more than four. Unlike other common liquids, self-rewetting fluids have the property that the surface tension increases with temperature up to a certain limit. The experiments are conducted to improve the heat-transport capability and thermal efficiency of capillary assisted heat pipes with the self rewetting fluids like aqueous solutions of n-Butanol and n-Pentanol and its performance is compared with that of pure water. The n-Butanol and n-Pentanol are added to the pure water at a concentration of 0.001moles/lit to prepare the self rewetting fluids. The heat pipes are made up of copper container with a two-layered stainless steel wick consisting of mesh wrapped screen. The experimental results show that the maximum heat transport of the heat pipe is enhanced and the thermal resistances are considerably decreased than the traditional heat pipes filled with water. The fluids used exhibit an anomalous increase in the surface tension with increasing temperature.


Author(s):  
Weilin Zhao ◽  
Jun Xu ◽  
Jinkai Li

Abstract The graphene oxide-deionized water (GO-DW) and graphene oxide-ethylence glycol (GO-EG) nanofluids were synthesized. The better suspension of nanofluids was achieved. The thermal conductivity of both nanofluids was analyzed. It indicates that GO nanoparticles can strengthen the thermal conductivity of DW base fluids by 22.6%–61.7% and EG base fluids by 15.3%–32.8%. Four copper heat pipes charged with GO-DW and GO-EG nanofluids as well as DW and EG base fluids were experimentally researched, it is discovered that the addition of GO nonoparticles in heat pipe can elevate the condenser wall temperature and reduce the temperature difference. Future analysis finds that, with respect to DW and EG fluids heat pipe, the thermal resistances of GO-DW and GO-EG nanofluids heat pipe are respectively decreased 42.6–52.4% and 31.9%–38.4% for air cooling, and 15.5–16.7% and 11.5%–18.9% for water cooling at condenser section. Besides, the wick structure of GO-DW nanofluids heat pipe was examined by Scanning Electron Microscope, and the effective thermal conductivity of fluid-wick combination was evaluated. The outcomes demonstrate that the evaporator wick surface contains about 0375–1.24μm coating film of GO nanoparticles. Assumed the coating film is 0.75μm, the effective thermal conductivity of fluid-wick combination is respectively enhanced by 66.92 % for GO-DW nonofluids heat pipe and 37.32% for GO-EG nonofluids heat pipe at 70 °C.


2014 ◽  
Vol 490-491 ◽  
pp. 251-255 ◽  
Author(s):  
Yu Ying Gong ◽  
Zong Ming Liu ◽  
Wei Lin Zhao

Three heat pipes with nanofluids of Al2O3-water, CuO-water and SiO2-water were tested experimentally. The temperature distribution of their start-up process was analysed, and compared the heat pipe with water. The results showed that the start-up way of heat pipe filled with nanofluids was coincident, the heat pipe filled with nanofluids showed a lower start-up temperature and a shorter start-up time in evaporator section compared with heat pipe filled with water, the temperature drop between evaporator section and condenser section for the heat pipe filled with nanofluids were reduced by 2-5°C than that of the heat pipe filled with water. The effect of the length of the heating section of heat pipe filled with nanofluids on the start-up process was little.


In this experiment, work was carried out to infer the thermal characteristics of a heat pipe containing nano fluid inside in it. Various Parameters were considered in this experiment, some of them are inlet temperature at one end, mass flow rate (mfr) to evaporator section and inclination angle of heat pipe. In this work three numbers of heat pipes were used and hybrid nanofluid of Al2O3 – TiO2 has been used as cooling fluid in all three heat pipes. The thermal efficiency of the usage of hybrid nanofluidic working system is found to be highest and also this makes the system to get worse in terms of thermal resistance. The flow rate of condenser section was modified to the various ratios from 1:1 to 1:3 as that of evaporator section. To find the thermal characteristics of the heat pipe, many experiments have been carried out by considering many operating conditions. Evaluation on the heat pipe effectiveness was made on basis of gravity assistance to the condenser. The better productiveness of heat pipe when using the hybrid nanofluid has attained when Ch/Cc = 2 and 100 LPH for all operating conditions.


1993 ◽  
Vol 115 (1) ◽  
pp. 112-117 ◽  
Author(s):  
M. T. North ◽  
C. T. Avedisian

Results of an experimental study are reported which demonstrate the ability of heat pipes to simultaneously dissipate high heat fluxes and high total power at low surface temperatures. The application is to cooling high power density (and high total power) semiconductor chip modules. The two designs studied incorporate air or liquid cooling in the condenser sections. The air-cooled design consisted of a manifold base plate with a series of holes drilled in it each of which was lined with sintered copper powder which served as the wick. An array of wick lined tubes was attached normal to the plate and served as the condenser section. The other heat pipe was disk shaped and also had a sintered wick structure. Cooling water channels were placed over the entire periphery of the housing except in the region of heat input. Reported steady heat fluxes are up to 31 W/cm2 corresponding to total power dissipation of up to 1400 W for the water cooled heat pipe and up to 47 W/cm2 (900 W total power) for the air cooled heat pipe with surface temperatures under 100°C.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 751-760
Author(s):  
Lei Lei

AbstractTraditional testing algorithm based on pattern matching is impossible to effectively analyze the heat transfer performance of heat pipes filled with different concentrations of nanofluids, so the testing algorithm for heat transfer performance of a nanofluidic heat pipe based on neural network is proposed. Nanofluids are obtained by weighing, preparing, stirring, standing and shaking using dichotomy. Based on this, the heat transfer performance analysis model of the nanofluidic heat pipe based on artificial neural network is constructed, which is applied to the analysis of heat transfer performance of nanofluidic heat pipes to achieve accurate analysis. The experimental results show that the proposed algorithm can effectively analyze the heat transfer performance of heat pipes under different concentrations of nanofluids, and the heat transfer performance of heat pipes is best when the volume fraction of nanofluids is 0.15%.


1998 ◽  
Vol 120 (4) ◽  
pp. 1064-1071 ◽  
Author(s):  
J. M. Ha ◽  
G. P. Peterson

The original analytical model for predicting the maximum heat transport capacity in micro heat pipes, as developed by Cotter, has been re-evaluated in light of the currently available experimental data. As is the case for most models, the original model assumed a fixed evaporator region and while it yields trends that are consistent with the experimental results, it significantly overpredicts the maximum heat transport capacity. In an effort to provide a more accurate predictive tool, a semi-empirical correlation has been developed. This modified model incorporates the effects of the temporal intrusion of the evaporating region into the adiabatic section of the heat pipe, which occurs as the heat pipe approaches dryout conditions. In so doing, the current model provides a more realistic picture of the actual physical situation. In addition to incorporating these effects, Cotter’s original expression for the liquid flow shape factor has been modified. These modifications are then incorporated into the original model and the results compared with the available experimental data. The results of this comparison indicate that the new semiempirical model significantly improves the correlation between the experimental and predicted results and more accurately represents the actual physical behavior of these devices.


Author(s):  
Kevin D. Woods ◽  
Alfonso Ortega

Heat pumps are mechanical systems that provide heating to a space in the winter, and cooling in the summer. They are increasingly popular because the same system provides both cooling modes, depending on the direction of the cycle upon which they operate. For proper operation, the heat pump must be connected to a constant temperature thermal reservoir which in traditional systems is the ambient air. In ground source heat pumps however, subterranean ground water is used as the thermal reservoir. To access the subterranean groundwater, “geothermal” wells are drilled into the formation. Water from the building heating or cooling system is circulated through the wells thereby promoting heat exchange between the coolant water and the subterranean formation. The potential for higher efficiency heating and cooling has increased the utilization of ground source heating ventilating and air conditioning systems. In addition, their compatibility with a naturally occurring and stable thermal reservoir has increased their use in the design of sustainable or green buildings and man-made environments. Groundwater flow affects the temperature response of thermal wells due to advection of heat by physical movement of groundwater through the aquifer. Research on this subject is scarce in the geothermal literature. This paper presents the derivation of an analytical solution for thermal dispersion by conduction and advection from hydraulic groundwater flow for a “geothermal” well. This analytical solution is validated against asymptotic analytical solutions. The traditional constant linear heat source solution is dependent on the ground formation thermal properties; the most dominant of which is the thermal conductivity. The results show that as hydraulic groundwater flow increases, the influence of the ground formation thermal conductivity on the temperature response of the well diminishes. The diminishing influence is evident in the Peclet number parameter; a comparison of thermal advection from hydraulic groundwater flow to thermal conduction by molecular diffusion.


Author(s):  
D. Sugumar ◽  
Kek Kiong Tio

A micro heat pipe will operate effectively by achieving its maximum possible heat transport capacity only if it is to operate at a specific temperature, i.e., design temperature. In reality, micro heat pipe’s may be required to operate at temperatures different from the design temperature. In this study, the heat transport capacity of an equilateral triangle micro heat pipe is investigated. The micro heat pipe is filled optimally with working fluid for a specific design temperature and operated at different operating temperatures. For this purpose, water, pentane and acetone was selected as the working fluids. From the numerical results obtained, it shows that the optimal charge level of the micro heat pipe is dependent on the operating temperature. Furthermore, the results also shows that if the micro heat pipe is to be operated at temperatures other than its design temperature, its heat transport capacity is limited by the occurrence of flooding at the condenser section or dryout at the evaporator section, depending on the operating temperature and type of working fluid. It is observed that when the micro heat pipe is operated at a higher temperature than its design temperature, the heat transport capacity increases but limited by the onset of dryout at the evaporator section. However, the heat transport capacity decreases if it is to be operated at lower temperatures than its design temperature due to the occurrence of flooding at condenser end. From the results obtained, we can conclude that the performance of a micro heat pipe is decreased if it is to be operated at temperatures other than its design temperature.


Sign in / Sign up

Export Citation Format

Share Document