scholarly journals Cocoa and Cocoa Fibre Intake Modulate Reactive Oxygen Species and Immunoglobulin Production in Rats Submitted to Acute Running Exercise

Proceedings ◽  
2020 ◽  
Vol 61 (1) ◽  
pp. 30
Author(s):  
Patricia Ruiz-Iglesias ◽  
Raquel Gómez-Bris ◽  
Malén Massot-Cladera ◽  
María J. Rodríguez-Lagunas ◽  
Francisco J. Pérez-Cano ◽  
...  

Acute high-intensity exercise can impair the immune system, and lead to oxidative stress. Cocoa intake might help in protecting against oxidative damage and impaired immune functioning. The aim of this study was to establish the effect of cocoa and cocoa fibre on the oxidative status and the immunoglobulin (Ig) production of rats following a bout of acute exercise on a treadmill. The production of reactive oxygen species (ROS) by macrophages and the concentration of serum and mucosal Ig was assessed 16 h after the running session. Exercise increased ROS production and decreased the serum IgG concentration and the salivary gland IgM content. A cocoa fibre-enriched diet prevented the increased ROS production and the reduction in salivary IgM induced by exercise, although it decreased the IgA content in serum and the salivary glands. Overall, cocoa, by means of its fibre content, can partially prevent the alterations in ROS and Ig production induced by a single session of intensive running exercise.

Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3726 ◽  
Author(s):  
Viktoria Dobrocsyova ◽  
Katarina Krskova ◽  
Marcela Capcarova ◽  
Stefan Zorad

(1) Background: Impaired adipose tissue function leads to the development of metabolic disorders. Reactive oxygen species play a key role in the regulation of adipogenesis and insulin-stimulated glucose uptake by adipocytes. Quercetin (QCT) regulates adipogenesis by affecting the redox state of preadipocytes. Ochratoxin A (OTA) is one of the most prevalent mycotoxins contaminating food. It has cytotoxic, genotoxic, pro-inflammatory, and anti-adipogenic effects. Antioxidants are believed to protect cells from the cytotoxicity and genotoxicity induced by OTA. The aim of this study was to investigate the effect of QCT and OTA application on preadipocyte differentiation, oxidative status, and adipocyte metabolism. (2) Methods: Primary rat preadipocytes were isolated from subcutaneous adipose tissue of Wistar rats. Gene expressions were determined by qPCR. Cell viability, reactive oxygen species (ROS) production, glucose uptake, and lipid accumulation were determined using commercially available kits. (3) Results: A dose-dependent inhibitory effect of QCT on adipogenic differentiation was observed, which was accompanied by a decrease in ROS production. Reduced ROS formation is closely related to impaired glucose uptake by adipocytes. (4) Conclusions: The results of this study indicate a key role of ROS in regulating adipogenesis and metabolic pathways, which is affected by the application of QCT and/or OTA.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1586
Author(s):  
Svetlana Veselova ◽  
Tatyana Nuzhnaya ◽  
Guzel Burkhanova ◽  
Sergey Rumyantsev ◽  
Igor Maksimov

Reactive oxygen species (ROS) play a central role in plant immune responses. The most important virulence factors of the Stagonospora nodorum Berk. are multiple fungal necrotrophic effectors (NEs) (SnTox) that affect the redox-status and cause necrosis and/or chlorosis in wheat lines possessing dominant susceptibility genes (Snn). However, the effect of NEs on ROS generation at the early stages of infection has not been studied. We studied the early stage of infection of various wheat genotypes with S nodorum isolates -Sn4VD, SnB, and Sn9MN, carrying a different set of NE genes. Our results indicate that all three NEs of SnToxA, SnTox1, SnTox3 significantly contributed to cause disease, and the virulence of the isolates depended on their differential expression in plants (Triticum aestivum L.). The Tsn1–SnToxA, Snn1–SnTox1and Snn3–SnTox3 interactions played an important role in inhibition ROS production at the initial stage of infection. The Snn3–SnTox3 inhibited ROS production in wheat by affecting NADPH-oxidases, peroxidases, superoxide dismutase and catalase. The Tsn1–SnToxA inhibited ROS production in wheat by affecting peroxidases and catalase. The Snn1–SnTox1 inhibited the production of ROS in wheat by mainly affecting a peroxidase. Collectively, these results show that the inverse gene-for gene interactions between effector of pathogen and product of host sensitivity gene suppress the host’s own PAMP-triggered immunity pathway, resulting in NE-triggered susceptibility (NETS). These results are fundamentally changing our understanding of the development of this economical important wheat disease.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. Jaenen ◽  
S. Fraguas ◽  
K. Bijnens ◽  
M. Heleven ◽  
T. Artois ◽  
...  

AbstractDespite extensive research on molecular pathways controlling the process of regeneration in model organisms, little is known about the actual initiation signals necessary to induce regeneration. Recently, the activation of ERK signaling has been shown to be required to initiate regeneration in planarians. However, how ERK signaling is activated remains unknown. Reactive Oxygen Species (ROS) are well-known early signals necessary for regeneration in several models, including planarians. Still, the probable interplay between ROS and MAPK/ERK has not yet been described. Here, by interfering with major mediators (ROS, EGFR and MAPK/ERK), we were able to identify wound-induced ROS, and specifically H2O2, as upstream cues in the activation of regeneration. Our data demonstrate new relationships between regeneration-related ROS production and MAPK/ERK activation at the earliest regeneration stages, as well as the involvement of the EGFR-signaling pathway. Our results suggest that (1) ROS and/or H2O2 have the potential to rescue regeneration after MEK-inhibition, either by H2O2-treatment or light therapy, (2) ROS and/or H2O2 are required for the activation of MAPK/ERK signaling pathway, (3) the EGFR pathway can mediate ROS production and the activation of MAPK/ERK during planarian regeneration.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Anne-Cécile Ribou ◽  
Klaus Reinhardt

Abstract Objective Sperm ageing has major evolutionary implications but has received comparatively little attention. Ageing in sperm and other cells is driven largely by oxidative damage from reactive oxygen species (ROS) generated by the mitochondria. Rates of organismal ageing differ across species and are theorized to be linked to somatic ROS levels. However, it is unknown whether sperm ageing rates are correlated with organismal ageing rates. Here, we investigate this question by comparing sperm ROS production in four lines of Drosophila melanogaster that have previously been shown to differ in somatic mitochondrial ROS production, including two commonly used wild-type lines and two lines with genetic modifications standardly used in ageing research. Results Somatic ROS production was previously shown to be lower in wild-type Oregon-R than in wild-type Dahomey flies; decreased by the expression of alternative oxidase (AOX), a protein that shortens the electron transport chain; and increased by a loss-of-function mutation in dj-1β, a gene involved in ROS scavenging. Contrary to predictions, we found no differences among these four lines in the rate of sperm ROS production. We discuss the implications of our results, the limitations of our study, and possible directions for future research.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 936
Author(s):  
Olga Witkowska-Piłaszewicz ◽  
Rafał Pingwara ◽  
Jarosław Szczepaniak ◽  
Anna Winnicka

Clenbuterol, the β2-adrenoceptor agonist, is gaining growing popularity because of its effects on weight loss (i.e., chemical liposuction). It is also popular in bodybuilding and professional sports, due to its effects that are similar to anabolic steroids. However, it is prohibited by anti-doping control. On the other hand, it is suggested that clenbuterol can inhibit the inflammatory process. The cells from 14 untrained and 14 well-trained race horses were collected after acute exercise and cultured with clenbuterol. The expressions of CD4, CD8, FoxP3, CD14, MHCII, and CD5 in PBMC, and reactive oxygen species (ROS) production, as well as cell proliferation, were evaluated by flow cytometry. In addition, IL-1β, IL-4, IL-6, IL-10, IL-17, INF-γ and TNF-α concentrations were evaluated by ELISA. β2-adrenoceptor stimulation leads to enhanced anti-inflammatory properties in well-trained horses, as do low doses in untrained animals. In contrast, higher clenbuterol doses create a pro-inflammatory environment in inexperienced horses. In conclusion, β2-adrenoceptor stimulation leads to a biphasic response. In addition, the immune cells are more sensitive to drug abuse in inexperienced individuals under physical training.


2021 ◽  
Vol 22 (11) ◽  
pp. 6044
Author(s):  
Xiaoling Li ◽  
Gregor Römer ◽  
Raphaela P. Kerindongo ◽  
Jeroen Hermanides ◽  
Martin Albrecht ◽  
...  

SGLT-2i’s exert direct anti-inflammatory and anti-oxidative effects on resting endothelial cells. However, endothelial cells are constantly exposed to mechanical forces such as cyclic stretch. Enhanced stretch increases the production of reactive oxygen species (ROS) and thereby impairs endothelial barrier function. We hypothesized that the SGLT-2i’s empagliflozin (EMPA), dapagliflozin (DAPA) and canagliflozin (CANA) exert an anti-oxidative effect and alleviate cyclic stretch-induced endothelial permeability in human coronary artery endothelial cells (HCAECs). HCAECs were pre-incubated with one of the SGLT-2i’s (1 µM EMPA, 1 µM DAPA and 3 µM CANA) for 2 h, followed by 10% stretch for 24 h. HCAECs exposed to 5% stretch were considered as control. Involvement of ROS was measured using N-acetyl-l-cysteine (NAC). The sodium-hydrogen exchanger 1 (NHE1) and NADPH oxidases (NOXs) were inhibited by cariporide, or GKT136901, respectively. Cell permeability and ROS were investigated by fluorescence intensity imaging. Cell permeability and ROS production were increased by 10% stretch; EMPA, DAPA and CANA decreased this effect significantly. Cariporide and GKT136901 inhibited stretch-induced ROS production but neither of them further reduced ROS production when combined with EMPA. SGLT-2i’s improve the barrier dysfunction of HCAECs under enhanced stretch and this effect might be mediated through scavenging of ROS. Anti-oxidative effect of SGLT-2i’s might be partially mediated by inhibition of NHE1 and NOXs.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 782.2-782
Author(s):  
C. H. Lee ◽  
C. H. Chung ◽  
Y. J. Choi ◽  
W. H. Yoo ◽  
J. Y. Kim ◽  
...  

Background:Reactive oxygen species (ROS) are one of the significant factors of chemical or physical cell signaling in a wide variety of cell types including skeletal cells. Receptor activator of NF-βB ligand (RANKL) induces generation of intracellular ROS, which act as second messengers in RANKL-mediated osteoclastogenesis. Dual oxidase maturation factor 1 (Duoxa1) was first identified as aDrosophilaNumb-interacting protein (NIP), and has been associated with the maturation of ROS generating enzymes including dual oxidases (Duox1 and Duox2). In the progression of osteoclast differentiation using mouse bone marrow-derived macrophages (BMMs), we identified that only Duoxa1 level showed an effective change upon RANKL stimulation, but not Duox1, Duox2, and Duoxa2.Objectives:we hypothesized that Duoxa1 could independently act as a second messenger for RANKL stimulation and regulate ROS production during osteoclast differentiation.Methods:Using siRNA or retrovirus transduction and knockdown of Duoxa1 via siRNAResults:Duoxa1 level gradually increased during RANKL-induced osteoclast differentiation. We found that Duoxa1 regulated RANKL-stimulated osteoclast formation and bone resorption positively. knockdown of Duoxa1 via siRNA decreased the RANKL-induced ROS production. During Duoxa1-related control of osteoclastogenesis, activation of tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6)-mediated early signaling molecules including MAPKs, Akt, IβB, Btk, and PLC 2 was affected, which sequentially modified the mRNA or protein expression levels of key transcription factors in osteoclastogenesis, such as c-Fos and NFATc1, as well as mRNA expression of osteoclast-specific markers including OSCAR, ATP6v0d2, and CtsK.Conclusion:Overall, our data indicate that Duoxa1 plays a crucial role in osteoclastogenesis via regulating RANKL-induced intracellular ROS production and activating TRAF6-mediated signaling.Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document