scholarly journals Fast Mass-Production of Medical Safety Shields under COVID-19 Quarantine: Optimizing the Use of University Fabrication Facilities and Volunteer Labor

Author(s):  
Vladimir Kalyaev ◽  
Alexey I. Salimon ◽  
Alexander M. Korsunsky ◽  
Alexey A. Denisov

COVID-19 pandemic provoked a number of restrictive measures, such as the closure or severe restriction of border transit for international trading traffic, quarantines and self-isolation. This caused a series of interrelated consequences that not only prevent or slow down the spread of disease, but also impact the medical systems’ capability to treat the patients and help their recovery. In particular, steeply growing demand for medical safety goods cannot be satisfied by regular suppliers due to the shortage of raw materials originating from other countries or remotely located national sources, under conditions of quarantined manpower. The current context inevitably brings back memories (and records!) of the situation 80 years ago, when WWII necessitated major effort directed at the rapid build-up of low-cost mass production to satisfy all aspects of war-time need. In the present short report we document a successful case of fast mass-production of light transparent medical safety face shields (thousands per day) realized in Skolkovo Institute of Science and Technology (Skoltech) at Fablab and Machine Shop Shared Facility (Skoltech FabLab). The demand for safety face shields by tens of hospitals in Moscow and other cities rapidly ramped up due to the need to protect medical staff during patient collection and transportation to hospitals, and within both the infected (“red”) and uninfected (“green”) zones. Materials selection for sterilizable transparent materials was conducted based on the analysis of merit indices, namely, minimal weight at given stiffness and minimal cost at given stiffness. Due to the need for permanent wear, design was motivated by low weight and comfortable head fixation, along with high production efficiency. The selection of minimal tooling in University fabrication workshops and the use of distributed volunteer labor are discussed.

Author(s):  
Vladimir Kalyaev ◽  
Alexey I. Salimon ◽  
Alexander M. Korsunsky

COVID-19 pandemic provoked a number of restrictive measures, such as the closure or severe restriction of border transit for international trading traffic, quarantines and self-isolation. This caused a series of interrelated consequences that not only prevent or slow down the spread of disease, but also impact the medical systems’ capability to treat the patients and help their recovery. In particular, steeply growing demand for medical safety goods cannot be satisfied by regular suppliers due to the shortage of raw materials originating from other countries or remotely located national sources, under conditions of quarantined manpower. The current context inevitably brings back memories (and records!) of the situation 80 years ago, when WWII necessitated major effort directed at the rapid build-up of low cost mass production to satisfy all aspects of war-time need. In the present short report we document a successful case of fast mass-production of light transparent medical safety face shields (thousands per day) realized in Skolkovo Institute of Science and Technology (Skoltech) fabrication laboratory (FabLab). The demand for safety face shields by tens of hospitals in Moscow City and Region rapidly ramped up due to the need to protect medical staff during patient collection and transportation to hospitals, and within both the infected (“red”) and uninfected (“green”) zones. Materials selection for sterilizable transparent materials was conducted based on the analysis of merit indices, namely, minimal weight at given stiffness and minimal cost at given stiffness. Due to the need for permanent wear, design was motivated by low weight and comfortable head fixation, along with high production efficiency. The selection of minimal tooling in University fabrication workshops and the use of distributed volunteer labor are discussed.


2021 ◽  
Vol 37 ◽  
pp. 00115
Author(s):  
Ivan Saltyk ◽  
Yulia Bolokhontseva

The world experience shows that in the 21st century, the sustainable development of the Russian beet production and sugar industry is impossible without scientific achievements. It requires low-cost resource-saving technologies that can save resources and increase the efficiency of sugar beet production. It was found that in order to increase the profitability of the sugar beet production industry, the following technologies should be used: intensive (application of herbicides); resource-saving (strip post-emergence application of herbicides); environmental protection (production of beets without herbicides, but with the use of manual labor). The intensification of sugar beet processing entails the use of new technologies that can reduce the volume of waste. The waste-free production makes it possible to strengthen the role of secondary resources as raw materials in the manufacture of various products. Secondary raw materials are used as raw materials. Structural and investment policies pursued by the government do not stimulate their processing. Therefore, beet-sugar agro-associations themselves should solve these issues. Their efforts should be aimed at ensuring the comprehensive processing of sugar beets to produce high-quality valuable food and feed products from production waste.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (2) ◽  
pp. 17-25
Author(s):  
JUNMING SHU ◽  
ARTHAS YANG ◽  
PEKKA SALMINEN ◽  
HENRI VAITTINEN

The Ji’an PM No. 3 is the first linerboard machine in China to use multilayer curtain coating technology. Since successful startup at the end of 2011, further development has been carried out to optimize running conditions, coating formulations, and the base paper to provide a product with satisfactory quality and lower cost to manufacture. The key challenges include designing the base board structure for the desired mechanical strength, designing the surface properties for subsequent coating operations, optimizing the high-speed running of the curtain coater to enhance production efficiency, minimizing the amount of titanium dioxide in the coating color, and balancing the coated board properties to make them suitable for both offset and flexographic printing. The pilot and mill scale results show that curtain coating has a major positive impact on brightness, while smoothness is improved mainly by the blade coating and calendering conditions. Optimization of base board properties and the blade + curtain + blade concept has resulted in the successful use of 100% recycled fiber to produce base board. The optical, mechanical, and printability properties of the final coated board meet market requirements for both offset and flexographic printing. Machine runnability is excellent at the current speed of 1000 m/min, and titanium dioxide has been eliminated in the coating formulations without affecting the coating coverage. A significant improvement in the total cost of coated white liner production has been achieved, compared to the conventional concept of using virgin fiber in the top ply. Future development will focus on combining low cost with further quality improvements to make linerboard suitable for a wider range of end-use applications, including frozen-food packaging and folding boxboard.


2020 ◽  
Vol 4 (1) ◽  
pp. 41-48
Author(s):  
Teodoro Astorga Amatosa ◽  
Michael E. Loretero

Bamboo is a lightweight and high-strength raw materials that encouraged researchers to investigate and explore, especially in the field of biocomposite and declared as one of the green-technology on the environment as fully accountable as eco-products. This research was to assess the technical feasibility of making single-layer experimental Medium-Density Particleboard panels from the bamboo waste of a three-year-old (Dendrocalamus asper). Waste materials were performed to produce composite materials using epoxy resin (C21H25C105) from a natural treatment by soaking with an average of pH 7.6 level of sea-water. Three different types of MDP produced, i.e., bamboo waste strip MDP (SMDP), bamboo waste chips MDP (CMDP) and bamboo waste mixed strip-chips MDP (MMDP) by following the same process. The experimental panels tested for their physical-mechanical properties according to the procedures defined by ASTM D1037-12. Conclusively, even the present study shows properties of MDP with higher and comparable to other composite materials; further research must be given better attention as potential substitute to be used as hardwood materials, especially in the production, design, and construction usage.


2019 ◽  
Author(s):  
Yu Wang ◽  
Nachuan Yang ◽  
Yi Shuai ◽  
Yunpeng Zhang ◽  
Kanghua Chen

Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Ludmila Kalčáková ◽  
Matej Pospiech ◽  
Bohuslava Tremlová ◽  
Zdeňka Javůrková ◽  
Irina Chernukha

To increase production efficiency of meat products, milk protein additives are often used. Despite a number of advantages, use of dairy ingredients involves a certain risk, namely the allergenic potential of milk proteins. A number of methods have been developed to detect milk-origin raw materials in foodstuffs, including immunological reference methods. This study presents newly developed immunohistochemical (IHC) methods for casein detection in meat products. Casein was successfully detected directly in meat products where sensitivity was determined at 1.21 and specificity at 0.28. The results obtained from the IHC were compared with the Enzyme-Linked Immuno Sorbent Assay (ELISA) and there was no statistically significant difference between the IHC and ELISA methods (p > 0.05). The correspondence between the methods was 72% in total. The highest correspondence was reached in frankfurters (90%), the lowest in canned pâté (44%).


Vibration ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 551-584
Author(s):  
Samir Mustapha ◽  
Ye Lu ◽  
Ching-Tai Ng ◽  
Pawel Malinowski

The development of structural health monitoring (SHM) systems and their integration in actual structures has become a necessity as it can provide a robust and low-cost solution for monitoring the structural integrity of and the ability to predict the remaining life of structures. In this review, we aim at focusing on one of the important issues of SHM, the design, and implementation of sensor networks. Location and number of sensors, in any SHM system, are of high importance as they impact the system integration, system performance, and accuracy of assessment, as well as the total cost. Hence we are interested in shedding the light on the sensor networks as an essential component of SHM systems. The review discusses several important parameters including design and optimization of sensor networks, development of academic and commercial solutions, powering of sensors, data communication, data transmission, and analytics. Finally, we presented some successful case studies including the challenges and limitations associated with the sensor networks.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2910
Author(s):  
Chaoyi Ding ◽  
Chun Liu ◽  
Ligang Zhang ◽  
Di Wu ◽  
Libin Liu

The high cost of development and raw materials have been obstacles to the widespread use of titanium alloys. In the present study, the high-throughput experimental method of diffusion couple combined with CALPHAD calculation was used to design and prepare the low-cost and high-strength Ti-Al-Cr system titanium alloy. The results showed that ultra-fine α phase was obtained in Ti-6Al-10.9Cr alloy designed through the pseudo-spinodal mechanism, and it has a high yield strength of 1437 ± 7 MPa. Furthermore, application of the 3D strength model of Ti-6Al-xCr alloy showed that the strength of the alloy depended on the volume fraction and thickness of the α phase. The large number of α/β interfaces produced by ultra-fine α phase greatly improved the strength of the alloy but limited its ductility. Thus, we have demonstrated that the pseudo-spinodal mechanism combined with high-throughput diffusion couple technology and CALPHAD was an efficient method to design low-cost and high-strength titanium alloys.


2021 ◽  
Author(s):  
Junzhen Ren ◽  
Pengqing Bi ◽  
Jianqi Zhang ◽  
Jiao Liu ◽  
Jingwen Wang ◽  
...  

Abstract Developing photovoltaic materials with simple chemical structures and easy synthesis still remains a major challenge in the industrialization process of organic solar cells (OSCs). Herein, an ester substituted poly(thiophene vinylene) derivative, PTVT-T, was designed and synthesized in very few steps by adopting commercially available raw materials. The ester groups on the thiophene units enable PTVT-T to have a planar and stable conformation. Moreover, PTVT-T presents a wide absorption band and strong aggregation effect in solution, which are the key characteristics needed to realize high performance in non-fullerene-acceptor (NFA)-based OSCs. We then prepared OSCs by blending PTVT-T with three representative fullerene- and NF-based acceptors, PC71BM, IT-4F and BTP-eC9. It was found that PTVT-T can work well with all the acceptors, showing great potential to match new emerging NFAs. Particularly, a remarkable power conversion efficiency of 16.20% is achieved in a PTVT-T:BTP-eC9-based device, which is the highest value among the counterparts based on PTV derivatives. This work demonstrates that PTVT-T shows great potential for the future commercialization of OSCs.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1186
Author(s):  
Carmen S. Favaro-Trindade ◽  
Fernando E. de Matos Junior ◽  
Paula K. Okuro ◽  
João Dias-Ferreira ◽  
Amanda Cano ◽  
...  

Nanoencapsulation via spray cooling (also known as spray chilling and spray congealing) has been used with the aim to improve the functionality, solubility, and protection of drugs; as well as to reduce hygroscopicity; to modify taste and odor to enable oral administration; and many times to achieve a controlled release profile. It is a relatively simple technology, it does not require the use of low-cost solvents (mostly associated to toxicological risk), and it can be applied for lipid raw materials as excipients of oral pharmaceutical formulations. The objective of this work was to revise and discuss the advances of spray cooling technology, with a greater emphasis on the development of lipid micro/nanoparticles to the load of active pharmaceutical ingredients for oral administration.


Sign in / Sign up

Export Citation Format

Share Document