scholarly journals UltraViolet SANitizing System for Sterilization of Ambulances Fleets and for Real-Time Monitoring of Their Sterilization Level

Author(s):  
Zuleika Michelini ◽  
Chiara Mazzei ◽  
Fabio Magurano ◽  
Melissa Baggieri ◽  
Antonella Marchi ◽  
...  

Background: The contamination of ambulances with pathogenic agents represents a potential threat for the public health, not only for common pathogens but also for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The aim of this project was to exploits the germicidal effect of the UVC radiation at 254 nm to sanitize the patient’s compartment of ambulances with an advanced UltraViolet SANitizing System (UV-SAN) and assess its relevance for avoiding the spread of COVID-19 and other drug resistant pathogens. Methods: The system is equipped with UVC lamps that are activated when the ambulance compartment is empty and sanitize the environment in less than 15 min. An Ozone sensor continuously monitors the gas concentration, ensuring it does not exceed threshold value harmful for patients and operators’ health. The system is relying on GNSS data and a satellite communication link, which allow to monitor and record traceability (when, where and what) of all the sanitation operations performed. This information is real-time monitored from a dedicated web-application. Results: UVC irradiation efficiently reduced SARS-CoV-2 virus titer (>99.99%), on inanimate surfaces such as plastic, stainless steel or rubber, with doses ranging from 5.5 to 24.8 mJ/cm2 and the UV-SAN system is effective against multi drug resistant (MDR) bacteria up to >99.99%, after 10 to 30 min of irradiation. Conclusions: UV-SAN can provide rapid, efficient and sustainable sanitization procedures of ambulances.

Author(s):  
Gregorio Rodríguez-Miranda ◽  
Rene Santos-Osorio ◽  
Carmen Sarahí Ordaz-Banda ◽  
José Armando Lopez-Rivera

In this work it present the development of a prototype for the control of spaces in a parking lot, which through a web page monitors and displays in real time the available places, for this project it is used: an Arduino Uno card, proximity sensors Lm393, male / female, male / male cables, ESP8266 WIFI module and two LEDs; all these connected to each other by a communication link developed with Arduino code, allowing to transmit and send data in the Arduino serial. An Arduino serial communication link is made with java language code, acting as an intermediary for the insertion of information in the database. The web application was developed with the programming language PHP and HTML and was connected to the database hosted on the MySQL server, using as a Sublime Text code editor. Thus achieving on the web page the monitoring in real time of the available parking places. The results shown by the prototype indicate that it is probably feasible to implement this technology to make the parking lots smart.


Author(s):  
M. Akhtaruzzaman ◽  
S. M. Sadakatul Bari ◽  
Syed Akhter Hossain ◽  
Md. Mahbubur Rahman

In satellite communication, Link Budget analysis is the most important part to determine gains and losses of signals from the transmitter to the receiver. Most importantly, it investigates system performance and optimum power which must be received at the receiver channel. In some cases, this information could be generated, saved for past data analysis, and share with peer users which are not found in existing web tools. Thus, it is obvious to design a new Link Budget calculator with users, database, and data retrieval support. This work focuses on designing a Link Budget web tool for X-band satellite communication through literature study and comparative analysis. The X-Band calculator is designed based on HTML, PHP, Javascript, and MySQL by ensuring several security issues, and can be accessed through mobile devices. This paper also focuses on the necessary equations of Link Budget for Uplink (Tx); Satellite; Downlink (Rx); Azimuth, Elevation, Distance analysis; and Rain attenuation. Though, comparative assessments among various web tools show some fluctuations, overall outputs show satisfactory results with small % of Errors (PoE) ensuring reliability and viability of the proposed X-Band tool for practical use.


2020 ◽  
Author(s):  
Francesco Pandolfo ◽  
Mario Mattia ◽  
Massimo Rossi ◽  
Valentina Bruno

<p>Volcano ground deformations needs hardware and software tools of high complexity related to the processing of raw GNSS data, filtering of outliers and spikes and clear visualization of displacements occurring in real time. In this project we developed a web application for high rate real time signals visualization from permanent GNSS  remote stations managed by INGV OE (Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo). Currently the new software tool is able to import GNSS data processed by some of the most important high rate real time software like GeoRTD® (owned by Geodetics), GNSS Spider® (Owned by Leica Geosystems) and RTKlib. The tool is based on the Grafana open source platform and InfluxDB open source database. Various dashboards have been configured to display time series of the North-East-Up coordinates to monitor single stations, to compare signals coming from different data sources and to display the displacement vectors on the map. We also applied a simple alghoritm for the detection of abnormal variations due to impending volcanic activity.This web interface is applied to different active Italian volcanoes as Etna (Sicily), Stromboli (Aeolian Islands) and Phlegrean Fields (Naples). We tested the performance of this software using as a case study the 24th December 2018 dike intrusion on the Etna volcano.</p>


2014 ◽  
Vol 61 (2) ◽  
pp. 270-274 ◽  
Author(s):  
Pavlina Volfova ◽  
Martina Lengerova ◽  
Jana Lochmanova ◽  
Dana Dvorakova ◽  
Dita Ricna ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Vel Murugan Gomathy ◽  
T. V. Paramasivam Sundararajan ◽  
C. Sengodan Boopathi ◽  
Pandiyan Venkatesh Kumar ◽  
Krishnamoorthy Vinoth Kumar ◽  
...  

AbstractIn the present study, the application of free space optics (FSO) transmission system to realize a long-reach high-altitude platform (HAP)-to-satellite communication link has been exploited. High-speed information transmission without interference is accomplished using orthogonal frequency division multiplexing (OFDM). Further, the information capacity of the proposed system is increased by employing mode division multiplexing (MDM). We have investigated the proposed MDM-OFDM-HAP-to-satellite FSO transmission system performance over varying FSO range, diameter of the receiver, pointing errors, and input power. Also, an improved transmission performance of the proposed system using a square root module is reported.


2021 ◽  
Vol 13 (12) ◽  
pp. 2259
Author(s):  
Ruicheng Zhang ◽  
Chengfa Gao ◽  
Qing Zhao ◽  
Zihan Peng ◽  
Rui Shang

A multipath is a major error source in bridge deformation monitoring and the key to achieving millimeter-level monitoring. Although the traditional MHM (multipath hemispherical map) algorithm can be applied to multipath mitigation in real-time scenarios, accuracy needs to be further improved due to the influence of observation noise and the multipath differences between different satellites. Aiming at the insufficiency of MHM in dealing with the adverse impact of observation noise, we proposed the MHM_V model, based on Variational Mode Decomposition (VMD) and the MHM algorithm. Utilizing the VMD algorithm to extract the multipath from single-difference (SD) residuals, and according to the principle of the closest elevation and azimuth, the original observation of carrier phase in the few days following the implementation are corrected to mitigate the influence of the multipath. The MHM_V model proposed in this paper is verified and compared with the traditional MHM algorithm by using the observed data of the Forth Road Bridge with a seven day and 10 s sampling rate. The results show that the correlation coefficient of the multipath on two adjacent days was increased by about 10% after residual denoising with the VMD algorithm; the standard deviations of residual error in the L1/L2 frequencies were improved by 37.8% and 40.7%, respectively, which were better than the scores of 26.1% and 31.0% for the MHM algorithm. Taking a ratio equal to three as the threshold value, the fixed success rates of ambiguity were 88.0% without multipath mitigation and 99.4% after mitigating the multipath with MHM_V. The MHM_V algorithm can effectively improve the success rate, reliability, and convergence rate of ambiguity resolution in a bridge multipath environment and perform better than the MHM algorithm.


2021 ◽  
Vol 13 (4) ◽  
pp. 703
Author(s):  
Lvyang Ye ◽  
Yikang Yang ◽  
Xiaolun Jing ◽  
Jiangang Ma ◽  
Lingyu Deng ◽  
...  

With the rapid development of satellite technology and the need to satisfy the increasing demand for location-based services, in challenging environments such as indoors, forests, and canyons, there is an urgent need to improve the position accuracy in these environments. However, traditional algorithms obtain the position solution through time redundancy in exchange for spatial redundancy, and they require continuous observations that cannot satisfy the real-time location services. In addition, they must also consider the clock bias between the satellite and receiver. Therefore, in this paper, we provide a single-satellite integrated navigation algorithm based on the elimination of clock bias for broadband low earth orbit (LEO) satellite communication links. First, we derive the principle of LEO satellite communication link clock bias elimination; then, we give the principle and process of the algorithm. Next, we model and analyze the error of the system. Subsequently, based on the unscented Kalman filter (UKF), we model the state vector and observation vector of our algorithm and give the state and observation equations. Finally, for different scenarios, we conduct qualitative and quantitative analysis through simulations, and the results show that, whether in an altimeter scenario or non-altimeter scenario, the performance indicators of our algorithm are significantly better than the inertial navigation system (INS), which can effectively overcome the divergence problem of INS; compared with the medium earth orbit (MEO) constellation, the navigation trajectory under the LEO constellation is closer to the real trajectory of the aircraft; and compared with the traditional algorithm, the accuracy of each item is improved by more than 95%. These results show that our algorithm not only significantly improves the position error, but also effectively suppresses the divergence of INS. The algorithm is more robust and can satisfy the requirements of cm-level real-time location services in challenging environments.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1431
Author(s):  
Ilkyu Kim ◽  
Sun-Gyu Lee ◽  
Yong-Hyun Nam ◽  
Jeong-Hae Lee

The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient’s vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body.


Sign in / Sign up

Export Citation Format

Share Document