scholarly journals The Antiviral Effects of Na,K-ATPase Inhibition: A Minireview

2018 ◽  
Vol 19 (8) ◽  
pp. 2154 ◽  
Author(s):  
Luciano Amarelle ◽  
Emilia Lecuona

Since being first described more than 60 years ago, Na,K-ATPase has been extensively studied, while novel concepts about its structure, physiology, and biological roles continue to be elucidated. Cardiac glycosides not only inhibit the pump function of Na,K-ATPase but also activate intracellular signal transduction pathways, which are important in many biological processes. Recently, antiviral effects have been described as a novel feature of Na,K-ATPase inhibition with the use of cardiac glycosides. Cardiac glycosides have been reported to be effective against both DNA viruses such as cytomegalovirus and herpes simplex and RNA viruses such as influenza, chikungunya, coronavirus, and respiratory syncytial virus, among others. Consequently, cardiac glycosides have emerged as potential broad-spectrum antiviral drugs, with the great advantage of targeting cell host proteins, which help to minimize resistance to antiviral treatments, making them a very promising strategy against human viral infections. Here, we review the effect of cardiac glycosides on viral biology and the mechanisms by which these drugs impair the replication of this array of different viruses.

1984 ◽  
Vol 18 (2) ◽  
pp. 137-138 ◽  

Despite the plethora of antibiotics available for the treatment of bacterial infections, very few agents have been developed to treat viral diseases. Ribavirin (Virazole) is a triazole nucleoside antiviral agent that produces selective antiviral effects against a broad spectrum of RNA and DNA viruses. The drug has been effective in the treatment of naturally occurring influenza A and B infections when administered by aerosol; oral administration has been ineffective. Ribavirin aerosol therapy also has proven effective to reduce symptoms of respiratory syncytial virus infections in young adults and hospitalized neonates. Ribavirin aerosol may be the first antiviral agent to treat these common diseases.


2019 ◽  
Vol 50 (3) ◽  
pp. 159-166 ◽  
Author(s):  
Jan Styczyński

AbstractViruses are a form of life that possess genes but do not have a cellular structure. Viruses do not have their own metabolism, and they require a host cell to make new products; therefore, they cannot naturally reproduce outside a host cell. The objective of this paper is to present the basic practical clinical roles of viruses in patients with hematological diseases including malignancies and non-malignan- cies, as well as those undergoing hematopoietic cell transplantation (HCT), with the focus on herpesviruses causing latent infections in severely immunocompromised patients. From the hematologist point of view, viruses can play a major role in four conditions: causing infections; causing lymphoproliferations and/or malignancies; causing (pan)cytopenia; and used as vectors in treatment (e.g., gene therapy, CAR-T cells). Taking into account the role of viruses in hematology, infection is the most frequent condition. Among DNA viruses, the highest morbidity potential for human is expressed by Herpesviridiae (herpesviruses), Adenoviridae (adenovirus; ADV), Polyomavirus (BKV, JCV), and Bocavirus. RNA viruses can play a role in pathogenesis of different clinical conditions and diseases: lymphoproliferative disorders and malignancy, possibly causing NHL, AML, MDS, and others (HCV, HIV, and others); pancytopenia and aplastic anemia (HIV, HCV, Dengue virus); respiratory infections (community-acquired respiratory virus infections; CARV) caused by Orthomyxoviruses (e.g. influenza A/B), Paramyxoviruses (e.g. human parainfluenza virus PIV-1, -2, -3, and -4; respiratory syncytial virus RSV-A and -B), picornaviruses (e.g., human rhinovirus), coronaviruses (e.g., human coronavirus), Pneumoviridiae (e.g., human metapneumovirus), and potentially other viruses.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 369
Author(s):  
Shuangjie Li ◽  
Jie Yang ◽  
Yuanyuan Zhu ◽  
Xingyu Ji ◽  
Kun Wang ◽  
...  

The innate DNA sensing receptors are one family of pattern recognition receptors and play important roles in antiviral infections, especially DNA viral infections. Among the multiple DNA sensors, cGAS has been studied intensively and is most defined in mammals. However, DNA sensors in chickens have not been much studied, and the chicken cGAS is still not fully understood. In this study, we investigated the chicken cGAS-STING signal axis, revealed its synergistic activity, species-specificity, and the signal essential sites in cGAS. Importantly, both cGAS and STING exhibited antiviral effects against DNA viruses, retroviruses, and RNA viruses, suggesting the broad range antiviral functions and the critical roles in chicken innate immunity.


2013 ◽  
Vol 41 (04) ◽  
pp. 957-969 ◽  
Author(s):  
You-Ping Deng ◽  
Yuan-Yuan Liu ◽  
Zhao Liu ◽  
Jin Li ◽  
Ling-Min Zhao ◽  
...  

Folium isatidis is a native Chinese herbaceous plant widely used for medicinal purposes for thousands of years. However, few studies have focused on the leaves of Isatis indigotica. In this report, we isolated a series of four fractions (I–IV) from Folium isatidis and explored the antiviral activity of each tested extract. The extracts were active against a panel of RNA and DNA viruses in vitro, namely influenza A virus (IAV), coxsackie virus B3 (CVB3), respiratory syncytial virus (RSV), and adenovirus type 7 (Ad-7). Oral administration of 200 mg/kg/d of fraction III in mice exerted strong antiviral effects in viral replication, accompanied by prolonged survival rate, attenuated lung tissue damage as well as significant reductions in pulmonary virus titers and lung index. Our results provide the first biochemical evidence that Folium isatidis and its extracts could be used as potential antiviral agent in the postexposure prophylaxis for multiple viral infections.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 548
Author(s):  
Kiramage Chathuranga ◽  
Asela Weerawardhana ◽  
Niranjan Dodantenna ◽  
Lakmal Ranathunga ◽  
Won-Kyung Cho ◽  
...  

Sargassum fusiforme, a plant used as a medicine and food, is regarded as a marine vegetable and health supplement to improve life expectancy. Here, we demonstrate that S. fusiforme extract (SFE) has antiviral effects against respiratory syncytial virus (RSV) in vitro and in vivo mouse model. Treatment of HEp2 cells with a non-cytotoxic concentration of SFE significantly reduced RSV replication, RSV-induced cell death, RSV gene transcription, RSV protein synthesis, and syncytium formation. Moreover, oral inoculation of SFE significantly improved RSV clearance from the lungs of BALB/c mice. Interestingly, the phenolic compounds eicosane, docosane, and tetracosane were identified as active components of SFE. Treatment with a non-cytotoxic concentration of these three components elicited similar antiviral effects against RSV infection as SFE in vitro. Together, these results suggest that SFE and its potential components are a promising natural antiviral agent candidate against RSV infection.


2020 ◽  
Vol 295 (14) ◽  
pp. 4604-4616 ◽  
Author(s):  
Ariel Shepley-McTaggart ◽  
Hao Fan ◽  
Marius Sudol ◽  
Ronald N. Harty

The WW domain is a modular protein structure that recognizes the proline-rich Pro-Pro-x-Tyr (PPxY) motif contained in specific target proteins. The compact modular nature of the WW domain makes it ideal for mediating interactions between proteins in complex networks and signaling pathways of the cell (e.g. the Hippo pathway). As a result, WW domains play key roles in a plethora of both normal and disease processes. Intriguingly, RNA and DNA viruses have evolved strategies to hijack cellular WW domain–containing proteins and thereby exploit the modular functions of these host proteins for various steps of the virus life cycle, including entry, replication, and egress. In this review, we summarize key findings in this rapidly expanding field, in which new virus-host interactions continue to be identified. Further unraveling of the molecular aspects of these crucial virus-host interactions will continue to enhance our fundamental understanding of the biology and pathogenesis of these viruses. We anticipate that additional insights into these interactions will help support strategies to develop a new class of small-molecule inhibitors of viral PPxY-host WW-domain interactions that could be used as antiviral therapeutics.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 160
Author(s):  
Teresa Navarro ◽  
Aurora Ortín ◽  
Oscar Cabezón ◽  
Marcelo De Las Heras ◽  
Delia Lacasta ◽  
...  

The presence of respiratory viruses and pestiviruses in sheep has been widely demonstrated, and their ability to cause injury and predispose to respiratory processes have been proven experimentally. A longitudinal observational study was performed to determine the seroprevalence of bovine parainfluenza virus type 3 (BPIV-3), bovine respiratory syncytial virus (BRSV), bovine herpesvirus type 1 (BHV-1) and pestiviruses in 120 lambs at the beginning and the end of the fattening period. During this time, the animals were clinically monitored, their growth was recorded, and post-mortem examinations were performed in order to identify the presence of pneumonic lesions in the animals. Seroconversion to all viruses tested except BHV-1 was detected at the end of the period. Initially, BPIV-3 antibodies were the most frequently found, while the most common seroconversion through the analysed period occurred to BRSV. Only 10.8% of the lambs showed no detectable levels of antibodies against any of the tested viruses at the end of the survey. In addition, no statistical differences were found in the presentation of respiratory clinical signs, pneumonic lesions nor in the production performance between lambs that seroconverted and those which did not, except in the case of pestiviruses. The seroconversion to pestiviruses was associated with a reduction in the final weight of the lambs.


2016 ◽  
Vol 44 (5) ◽  
pp. 1441-1454 ◽  
Author(s):  
Jennifer J. Huang ◽  
Gerard C. Blobe

Transforming growth factor-β (TGF-β) mediates numerous biological processes, including embryonic development and the maintenance of cellular homeostasis in a context-dependent manner. Consistent with its central role in maintaining cellular homeostasis, inhibition of TGF-β signaling results in disruption of normal homeostatic processes and subsequent carcinogenesis, defining the TGF-β signaling pathway as a tumor suppressor. However, once carcinogenesis is initiated, the TGF-β signaling pathway promotes cancer progression. This dichotomous function of the TGF-β signaling pathway is mediated through altering effects on both the cancer cells, by inducing apoptosis and inhibiting proliferation, and the tumor microenvironment, by promoting angiogenesis and inhibiting immunosurveillance. Current studies support inhibition of TGF-β signaling either alone, or in conjunction with anti-angiogenic therapy or immunotherapy as a promising strategy for the treatment of human cancers.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ma. Del Rocío Baños-Lara ◽  
Boyang Piao ◽  
Antonieta Guerrero-Plata

Mucins (MUC) constitute an important component of the inflammatory and innate immune response. However, the expression of these molecules by respiratory viral infections is still largely unknown. Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) are two close-related paramyxoviruses that can cause severe low respiratory tract disease in infants and young children worldwide. Currently, there is not vaccine available for neither virus. In this work, we explored the differential expression of MUC by RSV and hMPV in human epithelial cells. Our data indicate that the MUC expression by RSV and hMPV differs significantly, as we observed a stronger induction of MUC8, MUC15, MUC20, MUC21, and MUC22 by RSV infection while the expression of MUC1, MUC2, and MUC5B was dominated by the infection with hMPV. These results may contribute to the different immune response induced by these two respiratory viruses.


Sign in / Sign up

Export Citation Format

Share Document