scholarly journals Physiological and Proteomic Responses of Mulberry Trees (Morus alba. L.) to Combined Salt and Drought Stress

2019 ◽  
Vol 20 (10) ◽  
pp. 2486 ◽  
Author(s):  
Yan Liu ◽  
Dongfeng Ji ◽  
Robert Turgeon ◽  
Jine Chen ◽  
Tianbao Lin ◽  
...  

Intensive investigations have been conducted on the effect of sole drought or salinity stress on the growth of plants. However, there is relatively little knowledge on how plants, particularly woody species, respond to a combination of these two stresses although these stresses can simultaneously occur in the field. In this study, mulberry, an economically important resource for traditional medicine, and the sole food of domesticated silkworms was subjected to a combination of salt and drought stress and analyzed by physiological methods and TMT-based proteomics. Stressed mulberry exhibited significant alteration in physiological parameters, including root/shoot ratio, chlorophyll fluorescence, total carbon, and ion reallocation. A total of 577 and 270 differentially expressed proteins (DEPs) were identified from the stressed leaves and roots, respectively. Through KEGG analysis, these DEPs were assigned to multiple pathways, including carbon metabolism, photosynthesis, redox, secondary metabolism, and hormone metabolism. Among these pathways, the sucrose related metabolic pathway was distinctly enriched in both stressed leaves and roots, indicating an important contribution in mulberry under stress condition. The results provide a comprehensive understanding of the adaptive mechanism of mulberry in response to salt and drought stress, which will facilitate further studies on innovations in terms of crop performance.

Author(s):  
Abdullah All Imtiaz ◽  
Saleh Ahmed Shahriar ◽  
Md. Abdullahil Baque ◽  
Most. Nurjahan Khatun Eaty ◽  
Maliha Rahman Falguni

Sixteen advance genotypes of mungbeans under 5 different concentrations of Polyethylene Glycol (PEG) were studied to find out the better cultivar against drought stress condition. The experiment results revealed that germination, seedling production and water-related behavior of mungbean genotypes differed significantly under different PEG (drought inducer) concentrations. The mungbean genotype BINA Mung-6 (V8) is proved as highly tolerant against drought stress condition among all other tested genotypes. The results of the investigation revealed that BINA Mung-6 (V8) genotype consistently scored the highest value for all parameters except for the root shoot ratio and water retention capacity that was statistically comparable to genotypes BARI Mung-4 (V2) and BINA Mung-5 (V7). Consistently poor performance were recorded from IPM-02-03 (V16) genotype which is statistically similar as genotypes BMXK1-09015-2 (V13) and BMXK1-09015-6 (V10). The maximum percentage of germination (98.12%), shoot length (139.40 mm), root length (99.07 mm), shoot dry weight (22.32 mg), root dry weight (6.88 mg), relative water content (94.78), water retention capacity (24.98), germination co-efficient (22.27) and vigor index (233.90) were reported from BINA Mung-6 (V8) at a concentration of 0 percent PEG. The minimum percentage of germination (28.22 percent), shoot length (31.17 mm), root length (16.50 mm), shoot dry weight (2.21 mg), root dry weight (0.97 mg), relative water content (25.55), water retention capacity (3.08), germination co-efficient (6.06) and vigor index (13.45) were reported from IPM-02-03 (V16) mungbean advance lines at 0 percent PEG. Maximum (0.92) root shoot ratio was recorded from both BARI Mung-8 (V6) and BMX-08011-2 (V11) mungbean genotypes at 20 percent PEG concentration and minimum (0.22) at 0 percent PEG concentration from BARI Mung-5 (V3) genotype. Maximum water retention capacity (74.45) was recorded at 20 per cent PEG concentration from IPM-02-03 (V16) genotype and minimum (5.22) was at 0 per cent PEG concentration from BINA Mung-6 (V8) genotype.


2021 ◽  
Author(s):  
Jazba Anum ◽  
Charlotte O’Shea ◽  
M Zeeshan Hyder ◽  
Sumaira Farrukh ◽  
Karen Skriver ◽  
...  

Abstract Germin-like proteins (GLPs) are ubiquitous plant proteins, which play significant role in plant responses against various abiotic stresses. However, the potential functions of GLPs in rice (Oryza Sativa) against salt and drought stress are still unclear. In this study, transcriptional variation of 8 OsGLP genes (OsGLP3-6, OsGLP4-1, OsGLP8-4, OsGLP8-7, OsGLP8-10, OsGLP8-11 and OsGLP8-12) was analyzed in leaves and roots of two economically important Indica rice cultivars, KS282 and Super Basmati under salt and drought stress at early seedling stage. The relative expression analysis from qRT-PCR indicated the highest increase in expression of OsGLP3-6 in leaves and roots of both rice varieties with a significantly higher expression in KS282. Moreover, relative change in expression of OsGLP8-7, OsGLP8-10 and OsGLP8-11 under salt stress and OsGLP8-7 under drought stress was also commonly higher in leaves and roots of KS282 as compared to Super Basmati. Whereas, OsGLP3-7 and OsGLP8-12 after salt stress and OsGLP8-4 and OsGLP8-12 after drought stress were observed with higher relative expression in roots of Super Basmati than KS282. Importantly, the OsGLP3-6 and OsGLP4-1 from chromosome 3 and 4 respectively showed higher expression in leaves whereas most of the OsGLP genes from chromosome 8 exhibited higher expression in roots. Overall, as a result of this comparative analysis, OsGLP genes showed both general and specific expression profiles depending upon a specific rice variety, stress condition as well as tissue type. These results will increase our understanding of role of OsGLP genes in rice crop and provide useful information for the further in-depth research on their regulatory mechanisms in response to these stress conditions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
A. A. Gaber ◽  
A. F. Abou-Hadid ◽  
Y. A. El- Gabry ◽  
M. H. M. Ebid

In Egyptian sugarcane breeding program, a pot experiment was carried out during 2019 season at Agricultural Research Station, Giza Governorate (latitude 26o 33? N and longitude 31o 12? E), Egypt, to evaluate twenty sugarcane clones, compared with the cultivated variety GT.54-9, under three irrigation water levels IWL (100, 80 and 60% of IWL). The traits FW of the shoot and root, root: shoot ratio, LAI, LAR, Chla, Chlb, Chla: Chlb ratio, carotenoids and proline were assessed. From this study clones 17 had height shoot fresh weight under water stress condition, as same as, clones 1, 18 and 19 had great behavior under water stress. In addition to most of sugarcane tested clones were not affected by increase the degree of water stress from 100 to 80% of IWL. The LAI, Chl.a and Chl.b traits showed the high correlation with shoot fresh weight, whereas, proline had strong relationships with root fresh weight under sugarcane drought stress.


Author(s):  
Adinda Wuriandani ◽  
Sobir Sobir ◽  
Desta Wirnas ◽  
Agung Wahyu Susilo

Drought stress is a major constraint in cocoa production. The use of drought tolerant clone is the most efficient tool to overcome drought problem in cocoa production. North Carolina II (NCII) mating-design was used to identify parental and progeny performance in drought stress. The crossing consisted of three female parent clones namely KW 516, Sulawesi 3, and TSH 858, while male parent clones were ICCRI 09 and Scavina 6 then produced 6 combinations crosses. Genotypes used were 11 genotypes consisted of 5 parent clones and 6 cross genotypes. Drought treatment was applied to cocoa seedlings at 6 weeks after sowing with 25% and 100% available water content. The plants were maintained without water for five days to modulate the drought intensity. Variables observed were stem diameter, root length, root volume, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, and root/shoot ratio characters at 16 weeks after sowing. Based on the estimated general combining ability (GCA) value, TSH 858 was the best female parent, while Scavina 6 was the best male parent. Based on the estimated specific combining ability (SCA) value Sulawesi 3 x ICCRI 09 and TSH 858 x Scavina 6 were the best crosses. Based on the estimation of its genetic components, characters of drought tolerance stress were affected by additive genes. The dominant gene only affected the root fresh weight and root/shoot ratio. Based on SSI values, TSH 858 and Sulawesi 3 clones were drought-resistant clones, ICCRI 09 was moderate clone, and KW 516 and Scavina 6 were susceptible. Some of the findings were in contrast with earlier study.


Author(s):  
Agung Wahyu Susilo ◽  
Sobir Sobir ◽  
Adinda Wuriandani ◽  
Desta Wirnas

Drought stress can affect changes in physiological, morphological, biochemical,and molecular of plant. Plant in drought stress showed slower growthand development than in normal condition. This research aimed to determine the response of cocoa genotypes in seedling phase to drought stress in morphological and stomata character. This research conducted with split-plot design with main plot were water regimes (25% and 100% available water content). Eleven genotypes were used in this research consisted of six genotypes crosses and five genotypes parents. Variables observed were stem diameter, root volume, root length, leaf area, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, root/shoot ratio, and stomatal conductance. Drought stress decreased values associated with all observed morphological characters and stomata characters. Root/shoot ratio and stomatal conductance can be used to determine genotype with tolerance to drought. Sulawesi 3 x ICCRI 09 showed heighest in root/shoot ratio and stomatal conductance. Sulawesi 3 x ICCRI 09 can be used as candidate of plant material tolerant to drought.


Author(s):  
P Yogameenakshi ◽  
P Vivekanandan ◽  
N Nadarajan

The nature of gene action governing important quantitative traits viz.yield and drought tolerance in rice were studied through six parameter model of generation means analysis using six generations (viz., P1, P2, F1, F2, BC1 and BC2) of five crosses by imposing drought stress at reproductive stage. Additive gene action was noticed for the traits like days to flowering, panicle length, 100 grain weight and root thickness in majority of the crosses while the yield characters like productive tillers / plant, filled grains / panicle, harvest index and grain yield / plant and the drought tolerant characters like spikelet fertility, root length and root / shoot ratio were governed by dominance gene action. Both additive and dominance effects were found in panicle length in the cross Kallurundaikar / Moroberekan; spikelet fertility, dry root weight, root/shoot ratio and grain yield / plant in the cross Norungan / Moroberekan and 100 grain weight and root thickness in the cross PMK 2 / Moroberekan. Interaction effects mainly of additive x additive was noticed in panicle length, filled grains /panicle, dry root weight and root/shoot ratio in most of the crosses while dominance x dominance gene action was predominant in 100 grain weight and both additive x dominance and dominance x dominance in days to flowering and plant height.


2013 ◽  
Vol 39 (12) ◽  
pp. 2228 ◽  
Author(s):  
Ye FENG ◽  
Feng GUO ◽  
Bao-Long LI ◽  
Jing-Jing MENG ◽  
Xin-Guo LI ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 632
Author(s):  
Aihua Wang ◽  
Chao Ma ◽  
Hongye Ma ◽  
Zhilang Qiu ◽  
Xiaopeng Wen

Pitaya (Hylocereus polyrhizus L.) is highly tolerant to drought stress. Elucidating the response mechanism of pitaya to drought will substantially contribute to improving crop drought tolerance. In the present study, the physiological and proteomic responses of the pitaya cultivar ‘Zihonglong’ were compared between control seedlings and seedlings exposed to drought stress (−4.9 MPa) induced by polyethylene glycol for 7 days. Drought stress obviously enhanced osmolyte accumulation, lipid peroxidation, and antioxidant enzyme activities. Proteomic data revealed drought stress activated several pathways in pitaya, including carbohydrate and energy metabolism at two drought stress treatment time-points (6 h and 3 days). Other metabolic pathways, including those related to aspartate, glutamate, glutathione, and secondary metabolites, were induced more at 3 days than at 6 h, whereas photosynthesis and arginine metabolism were induced exclusively at 6 h. Overall, protein expression changes were consistent with the physiological responses, although there were some differences in the timing. The increases in soluble sugar contents mainly resulted from the degradation and transformation of insoluble carbohydrates. Differentially accumulated proteins in amino acid metabolism may be important for the conversion and accumulation of amino acids. GSH and AsA metabolism and secondary metabolism may play important roles in pitaya as enzymatic and nonenzymatic antioxidant systems. The enhanced carbohydrate and energy metabolism may provide the energy necessary for initiating the above metabolic pathways. The current study provided the first proteome profile of this species exposed to drought stress, and may clarify the mechanisms underlying the considerable tolerance of pitaya to drought stress.


Sign in / Sign up

Export Citation Format

Share Document