scholarly journals Gastric Cancer Extracellular Vesicles Tune the Migration and Invasion of Epithelial and Mesenchymal Cells in a Histotype-Dependent Manner

2019 ◽  
Vol 20 (11) ◽  
pp. 2608 ◽  
Author(s):  
Sara Rocha ◽  
Sara Pinto Teles ◽  
Mafalda Azevedo ◽  
Patrícia Oliveira ◽  
Joana Carvalho ◽  
...  

Extracellular vesicles (EVs) secreted by tumor cells modulate recipient cells’ behavior, but their effects in normal cells from the tumor microenvironment remain poorly known. In this study, we dissected the functional impact of gastric cancer cell-derived EVs (GC-EVs), representative of distinct GC histotypes, on the behavior of normal isogenic epithelial and mesenchymal cells. GC-EVs were isolated by differential centrifugation and characterized by transmission electron microscopy, nanoparticle tracking analysis, and imaging flow-cytometry. Epithelial and mesenchymal cells were challenged with GC-EVs and submitted to proliferation, migration, and invasion assays. Expression of epithelial and mesenchymal markers was followed by immunofluorescence and flow-cytometry. Our results indicated that GC-EVs secreted by diffuse-type cancer cells decrease the migration of recipient cells. This effect was more prominent and persistent for mesenchymal recipient cells, which also increased Fibronectin expression in response to EVs. GC-EVs secreted by cancer cells derived from tumors with an intestinal component increased invasion of recipient epithelial cells, without changes in EMT markers. In summary, this study demonstrated that GC-EVs modulate the migration and invasion of epithelial and mesenchymal cells from the tumor microenvironment, in a histotype-dependent manner, highlighting new features of intestinal and diffuse-type GC cells, which may help explaining differential metastasis patterns and aggressiveness of GC histotypes.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yixun Lu ◽  
Benlong Zhang ◽  
Baohua Wang ◽  
Di Wu ◽  
Chuang Wang ◽  
...  

Abstract Background Gastric cancer (GC) is the fifth most commonly diagnosed cancer worldwide. Due to the dismal prognosis, identifying novel therapeutic targets in GC is urgently needed. Evidences have shown that miRNAs played critical roles in the regulation of tumor initiation and progression. GLI family zinc finger 2 (GLI2) has been reported to be up-regulated and facilitate cancer progression in multiple malignancies. In this study, we focused on identifying GLI2-targeted miRNAs and clarifying the underlying mechanism in GC. Methods Paired fresh gastric cancer tissues were collected from gastrectomy patients. GLI2 and miRNAs expression were detected in gastric cancer tissues and cell lines. Bioinformatics analysis was used to predict GLI2-targeted miRNAs and dual-luciferase reporter assay was applied for target verification. CCK-8, clone formation, transwell and flow cytometry were carried out to determine the proliferation, migration, invasion and cell cycle of gastric cancer cells. Tumorsphere formation assay and flow cytometry were performed to detail the stemness of gastric cancer stem cells (GCSCs). Xenograft models in nude mice were established to investigate the role of the miR-144-3p in vivo. Results GLI2 was frequently upregulated in GC and indicated a poor survival. Meanwhile, miR-144-3p was downregulated and negatively correlated with GLI2 in GC. GLI2 was a direct target gene of miR-144-3p. MiR-144-3p overexpression inhibited proliferation, migration and invasion of gastric cancer cells. Enhanced miR-144-3p expression inhibited tumorsphere formation and CD44 expression of GCSCs. Restoration of GLI2 expression partly reversed the suppressive effect of miR-144-3p. Xenograft assay showed that miR-144-3p could inhibit the tumorigenesis of GC in vivo. Conclusions MiR-144-3p was downregulated and served as an essential tumor suppressor in GC. Mechanistically, miR-144-3p inhibited gastric cancer progression and stemness by, at least in part, regulating GLI2 expression.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3513 ◽  
Author(s):  
Zewen Chu ◽  
Haibo Wang ◽  
Tengyang Ni ◽  
Li Tao ◽  
Liangliang Xiang ◽  
...  

Gastric cancer is the fifth most common tumor and has the third-highest mortality rate among various malignant tumors, and the survival rate of patients is low. Celastrus orbiculatus extract has been shown to inhibit the activity of a variety of tumors. This study explored the inhibitory effect of the oleanane-type triterpenoid acid 28-hydroxy-3-oxoolean-12-en-29-oic acid molecule from Celastrus orbiculatus extract on gastric cancer cell invasion and metastasis and determined its mechanism. 28-Hydroxy-3-oxoolean-12-en-29-oic acid was first diluted to various concentrations and then used to treat SGC-7901 and BGC-823 cells. Cell proliferation was assessed by an MTT (thiazole blue) assay. Transwell and wound healing assays were used to assess cell invasion and migration. High-content imaging technology was used to further observe the effects of the drug on cell invasion and migration. Western blotting was used to assess the effects on the expression of matrix metalloproteinases (MMPs) and the effects on epithelial–mesenchymal transition (EMT)-related proteins and phosphorylation-related proteins. We found that 28-Hydroxy-3-oxoolean-12-en-29-oic acid inhibited the migration and invasion of SGC-7901 and BGC-823 gastric cancer cells in a dose-dependent manner. Consequently, 28-hydroxy-3-oxoolean-12-en-29-oic acid decreased the expression of EMT-related proteins and MMPs in gastric cancer cells and reduced protein phosphorylation, inhibiting the migration and invasion of gastric cancer cells.


2010 ◽  
Vol 30 (4) ◽  
pp. 296-306 ◽  
Author(s):  
Chin-Chin Ho ◽  
Kuang-Chi Lai ◽  
Shu-Chun Hsu ◽  
Chao-Lin Kuo ◽  
Chia-Yu Ma ◽  
...  

Metastasis suppressors and associated other regulators of cell motility play a critical initial role in tumor invasion and metastases. Benzyl isothiocyanate (BITC) is a hydrolysis compound of glucotropaeolin in dietary cruciferous vegetables. BITC has been found to exhibit prevention of cancers in laboratory animals and might also be chemoprotective in humans. Here, the purpose of this study was to investigate the effects of BITC on cell proliferation, migration, invasion and mitogen-activated protein kinase (MAPK) pathways of AGS human gastric cancer cells. Wound healing and Boyden chamber (migration and invasion) assays demonstrated that BITC exhibited an inhibitory effect on the abilities of migration and invasion in AGS cancer cells. BITC suppressed cell migration and invasion of AGS cells in a dose-dependent manner. Results from Western blotting indicated that BITC exerted an inhibitory effect on the ERK1/2, Ras, GRB2, Rho A, iNOS, COX-2 for causing the inhibitions of MMP-2, -7 and -9 then followed by the inhibitions of invasion and migration of AGS cells in vitro. BITC also promoted MKK7, MEKK3, c-jun, JNK1/2, VEGF, Sos1, phosphoinositide 3-kinase (PI3K), PKC, nuclear factor-kappaB (NF-κB) p65 in AGS cells. Results from real-time polymerized chain reaction (PCR) showed that BITC inhibited the gene expressions of MMP-2,-7 -9, FAK, ROCK1 and RhoA after BITC treatment for 24 and 48 hours in AGS cells. Taken together, the finding may provide new mechanisms and functions of BITC, which inhibit migration and invasion of human gastric cancer AGS cells.


2019 ◽  
Vol 20 (10) ◽  
pp. 804-814 ◽  
Author(s):  
Bing Wang ◽  
Yuzhu Zhang ◽  
Meina Ye ◽  
Jingjing Wu ◽  
Lina Ma ◽  
...  

Background: Chemoresistance blunts the therapeutic effect of cisplatin (DDP) on Triple-Negative Breast Cancer (TNBC). Researchers have not determined to date whether exosomes confer DDP resistance to other breast cancer cells or whether exosomal transfer of miRNAs derived from DDP-resistant TNBC cells confer DDP resistance. Objective: The aim of this study was to investigate the role of exosomes in chemoresistance in breast cancer. Methods: MDA-MB-231 cells resistant to DDP (231/DDP) were established. Exosomes were isolated from 231/DDP cells (DDP/EXO) and characterized by measuring the levels of protein markers, nanoparticle tracking analysis and transmission electron microscopy. MDA-MB-231, MCF-7 and SKBR-3 cell lines were treated with the isolated DDP/EXOs and cell proliferation and cytotoxicity to DDP were evaluated using MTT assays and apoptosis analyses. Western blotting was used to examine P-glycoprotein (P-gp) expression. Additionally, a microarray was used to analyse microRNA (miRNA) expression profiles in MDA-MB-231 and 231/DDP exosomes. The effects on miRNAs were determined using RT-PCR. Exosomal miR-423-5p was extracted, and differential expression was verified. The MTT cell viability assay, flow cytometry, and Transwell and immunofluorescence assays were performed to determine if differential expression of miR-423-5p sensitized cells to DDP in vitro. Results: Under a transmission electron microscope, the isolated exosomes exhibited a round or oval shape with a diameter ranging between 40 and 100 nm. DDP/EXOs labelled with PKH67 were taken up by MDA-MB-231 cells. After an incubation with DDP/EXOs, the cell lines exhibited a higher IC50 value for cisplatin, P-gp expression, migration and invasion capabilities and a lower apoptosis rate. Furthermore, 60 miRNAs from exosomes derived from 231/DDP cells were significantly up-regulated compared to exosomes from MDA-MB-231 cells. Notably, compared to the corresponding sensitive exosomes, miR-370-3p, miR-423-5p and miR-373 were the most differentially expressed miRNAs in DDP-resistant exosomes. We chose miR-423-5p, and up-regulation and down-regulation of exosomal miR-423-5p expression significantly affected DDP resistance. Conclusions: Exosomes from DDP-resistant TNBC cells (231/DDP) altered the sensitivity of other breast cancer cells to DDP in an exosomal miR-423-5p dependent manner. Our research helps to elucidate the mechanism of DDP resistance in breast cancer.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Huan Lu ◽  
Guanlin Zheng ◽  
Xiang Gao ◽  
Chanjuan Chen ◽  
Min Zhou ◽  
...  

Abstract Background Propofol is a kind of common intravenous anaesthetic agent that plays an anti-tumor role in a variety of cancers, including ovarian cancer. However, the working mechanism of Propofol in ovarian cancer needs further exploration. Methods The viability and metastasis of ovarian cancer cells were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays. Flow cytometry was used to evaluate the cell cycle and apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the abundance of circular RNA vacuolar protein sorting 13 homolog C (circVPS13C) and microRNA-145 (miR-145). The target relationship between miR-145 and circVPS13C was predicted by circinteractome database and verified by dual-luciferase reporter assay, RNA-binding protein immunoprecipitation (RIP) assay and RNA-pull down assay. Western blot assay was used to detect the levels of phosphorylated extracellular regulated MAP kinase (p-ERK), ERK, p-MAP kinse-ERK kinase (p-MEK) and MEK, in ovarian cancer cells. Results Propofol treatment suppressed the viability, cell cycle and motility and elevated the apoptosis rate of ovarian cancer cells. Propofol up-regulated miR-145 in a dose-dependent manner. Propofol exerted an anti-tumor role partly through up-regulating miR-145. MiR-145 was a direct target of circVPS13C. Propofol suppressed the progression of ovarian cancer through up-regulating miR-145 via suppressing circVPS13C. Propofol functioned through circVPS13C/miR-145/MEK/ERK signaling in ovarian cancer cells. Conclusion Propofol suppressed the proliferation, cell cycle, migration and invasion and induced the apoptosis of ovarian cancer cells through circVPS13C/miR-145/MEK/ERK signaling in vitro.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 558
Author(s):  
Jin Kyung Seok ◽  
Eun-Hee Hong ◽  
Gabsik Yang ◽  
Hye Eun Lee ◽  
Sin-Eun Kim ◽  
...  

Oxidized phospholipids are well known to play physiological and pathological roles in regulating cellular homeostasis and disease progression. However, their role in cancer metastasis has not been entirely understood. In this study, effects of oxidized phosphatidylcholines such as 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) on epithelial-mesenchymal transition (EMT) and autophagy were determined in cancer cells by immunoblotting and confocal analysis. Metastasis was analyzed by a scratch wound assay and a transwell migration/invasion assay. The concentrations of POVPC and 1-palmitoyl-2-glutaroyl-sn-glycero-phosphocholine (PGPC) in tumor tissues obtained from patients were measured by LC-MS/MS analysis. POVPC induced EMT, resulting in increase of migration and invasion of human hepatocellular carcinoma cells (HepG2) and human breast cancer cells (MCF7). POVPC induced autophagic flux through AMPK-mTOR pathway. Pharmacological inhibition or siRNA knockdown of autophagy decreased migration and invasion of POVPC-treated HepG2 and MCF7 cells. POVPC and PGPC levels were greatly increased at stage II of patient-derived intrahepatic cholangiocarcinoma tissues. PGPC levels were higher in malignant breast tumor tissues than in adjacent nontumor tissues. The results show that oxidized phosphatidylcholines increase metastatic potential of cancer cells by promoting EMT, mediated through autophagy. These suggest the positive regulatory role of oxidized phospholipids accumulated in tumor microenvironment in the regulation of tumorigenesis and metastasis.


PROTEOMICS ◽  
2021 ◽  
pp. 2000098
Author(s):  
Annalisa L.E. Carli ◽  
Shoukat Afshar‐Sterle ◽  
Alin Rai ◽  
Haoyun Fang ◽  
Ryan O'Keefe ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1820
Author(s):  
Chengcheng Hao ◽  
Yuxin Cui ◽  
Jane Lane ◽  
Shuqin Jia ◽  
Jiafu Ji ◽  
...  

Background: Osteopontin (OPN) splice variants are identified as predictors of tumour progression and therapeutic resistance in certain types of solid tumours. However, their roles in gastric cancer (GC) remain poorly characterized. The current study sought to assess the prognostic value of the three OPN splice variants (namely OPN-a, OPN-b, and OPN-c) in gastric cancer and their potential functions within gastric cancer cells. Methods: RNA extraction and reverse transcription were performed using our clinical cohort of gastric carcinomas and matched normal tissues (n = 324 matched pairs). Transcript levels were determined using real-time quantitative PCR. Three OPN splice variants overexpressed cell lines were created from the gastric cancer cell line HGC-27. Subsequently, biological functions, including cell growth, adhesion, migration, and invasion, were studied. The potential effects of OPN isoforms on cisplatin and 5-Fu were evaluated by detecting cellular reactive oxygen species (ROS) levels in the HGC-27-derived cell lines. Results: Compared with normal tissues, the expression levels of three splice variants were all elevated in gastric cancer tissues in an order of OPN-a > OPN-b > OPN-c. The OPN-a level significantly increased with increasing TNM staging and worse clinical outcome. There appeared to be a downregulation for OPN-c in increasing lymph node status (p < 0.05), increasing TNM staging, and poor differentiation. High levels of OPN-a and OPN-b were correlated with short overall survival and disease-free survival of gastric cancer patients. However, the low expression of OPN-c was significantly associated with a poor prognosis. Functional analyses further showed that ectopic expression of OPN-c suppressed in vitro proliferation, adhesiveness, migration, and invasion properties of HGC-27 cells, while the opposite role was seen for OPN-a. Cellular ROS detection indicated that OPN-a and OPN-c significantly promoted ROS production after treatment with 5-Fu comparing to OPN-vector, while only OPN-a markedly induced ROS production after treatment with cisplatin. Conclusion: Our results suggest that OPN splice variants have distinguished potential to predict the prognosis of gastric cancer. Three OPN variants exert distinctive functions in gastric cancer cells. Focusing on specific OPN isoforms could be a novel direction for developing diagnostic and therapeutic approaches in gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document