scholarly journals Genome-Wide Analysis of the MYB Transcription Factor Superfamily in Physcomitrella patens

2020 ◽  
Vol 21 (3) ◽  
pp. 975 ◽  
Author(s):  
Xiaojun Pu ◽  
Lixin Yang ◽  
Lina Liu ◽  
Xiumei Dong ◽  
Silin Chen ◽  
...  

MYB transcription factors (TFs) are one of the largest TF families in plants to regulate numerous biological processes. However, our knowledge of the MYB family in Physcomitrella patens is limited. We identified 116 MYB genes in the P. patens genome, which were classified into the R2R3-MYB, R1R2R3-MYB, 4R-MYB, and MYB-related subfamilies. Most R2R3 genes contain 3 exons and 2 introns, whereas R1R2R3 MYB genes contain 10 exons and 9 introns. N3R-MYB (novel 3RMYB) and NR-MYBs (novel RMYBs) with complicated gene structures appear to be novel MYB proteins. In addition, we found that the diversity of the MYB domain was mainly contributed by domain shuffling and gene duplication. RNA-seq analysis suggested that MYBs exhibited differential expression to heat and might play important roles in heat stress responses, whereas CCA1-like MYB genes might confer greater flexibility to the circadian clock. Some R2R3-MYB and CCA1-like MYB genes are preferentially expressed in the archegonium and during the transition from the chloronema to caulonema stage, suggesting their roles in development. Compared with that of algae, the numbers of MYBs have significantly increased, thus our study lays the foundation for further exploring the potential roles of MYBs in the transition from aquatic to terrestrial environments.

2021 ◽  
Vol 12 ◽  
Author(s):  
Tingting Zhang ◽  
Zheng Cui ◽  
Yuxin Li ◽  
Yuqian Kang ◽  
Xiqiang Song ◽  
...  

Dendrobium catenatum is an important traditional Chinese medicine and naturally grows on tree trunks and cliffs, where it can encounter diverse environmental stimuli. MYB transcription factors are widely involved in response to abiotic stresses. However, the MYB gene family has not yet been systematically cataloged in D. catenatum. In this study, a total of 133 MYB proteins were identified in D. catenatum, including 32 MYB-related, 99 R2R3-MYB, 1 3R-MYB, and 1 4R-MYB proteins. Phylogenetic relationships, conserved motifs, gene structures, and expression profiles in response to abiotic stresses were then analyzed. Phylogenetic analysis revealed MYB proteins in D. catenatum could be divided into 14 subgroups, which was supported by the conserved motif compositions and gene structures. Differential DcMYB gene expression and specific responses were analyzed under drought, heat, cold, and salt stresses using RNA-seq and validated by qRT-PCR. Forty-two MYB genes were differentially screened following exposure to abiotic stresses. Five, 12, 11, and 14 genes were specifically expressed in response to drought, heat, cold, and salt stress, respectively. This study identified candidate MYB genes with possible roles in abiotic tolerance and established a theoretical foundation for molecular breeding of D. catenatum.


2021 ◽  
Vol 22 (20) ◽  
pp. 11291
Author(s):  
Lichun Yang ◽  
Huanhuan Liu ◽  
Ziyuan Hao ◽  
Yaxian Zong ◽  
Hui Xia ◽  
...  

The MYB transcription factor family is one of the largest families in plants, and its members have various biological functions. R2R3-MYB genes are involved in the synthesis of pigments that yield petal colors. Liriodendron plants are widely cultivated as ornamental trees owing to their peculiar leaves, tulip-like flowers, and colorful petals. However, the mechanism underlying petal coloring in this species is unknown, and minimal information about MYB genes in Liriodendron is available. Herein, this study aimed to discern gene(s) involved in petal coloration in Liriodendron via genome-wide identification, HPLC, and RT-qPCR assays. In total, 204 LcMYB superfamily genes were identified in the Liriodendron chinense genome, and 85 R2R3-MYB genes were mapped onto 19 chromosomes. Chromosome 4 contained the most (10) R2R3-MYB genes, and chromosomes 14 and 16 contained the fewest (only one). MEME analysis showed that R2R3-MYB proteins in L. chinense were highly conserved and that their exon-intron structures varied. The HPLC results showed that three major carotenoids were uniformly distributed in the petals of L. chinense, while lycopene and β-carotene were concentrated in the orange band region in the petals of Liriodendron tulipifera. Furthermore, the expression profiles via RT-qPCR assays revealed that four R2R3-MYB genes were expressed at the highest levels at the S3P/S4P stage in L. tulipifera. This result combined with the HPLC results showed that these four R2R3-MYB genes might participate in carotenoid synthesis in the petals of L. tulipifera. This work laid a cornerstone for further functional characterization of R2R3-MYB genes in Liriodendron plants.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7950 ◽  
Author(s):  
Yongbin Wang ◽  
Lei Ling ◽  
Zhenfeng Jiang ◽  
Weiwei Tan ◽  
Zhaojun Liu ◽  
...  

In eukaryotes, proteins encoded by the 14-3-3 genes are ubiquitously involved in the plant growth and development. The 14-3-3 gene family has been identified in several plants. In the present study, we identified 22 GmGF14 genes in the soybean genomic data. On the basis of the evolutionary analysis, they were clustered into ε and non-ε groups. The GmGF14s of two groups were highly conserved in motifs and gene structures. RNA-seq analysis suggested that GmGF14 genes were the major regulator of soybean morphogenesis. Moreover, the expression level of most GmGF14s changed obviously in multiple stress responses (drought, salt and cold), suggesting that they have the abilities of responding to multiple stresses. Taken together, this study shows that soybean 14-3-3s participate in plant growth and can response to various environmental stresses. These results provide important information for further understanding of the functions of 14-3-3 genes in soybean.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 123
Author(s):  
Seema Pradhan ◽  
P Sushree Shyamli ◽  
Sandhya Suranjika ◽  
Ajay Parida

Drought and salinity stress have become the major factors for crop yield loss in recent years. Drastically changing climatic conditions will only add to the adverse effects of such abiotic stresses in the future. Hence, it is necessary to conduct extensive research to elucidate the molecular mechanisms that regulate plants’ response to abiotic stress. Halophytes are plants that can grow in conditions of high salinity and are naturally resistant to a number of abiotic stresses. Avicennia marina is one such halophyte, which grows in tropical regions of the world in areas of high salinity. In this study, we have analysed the role of R2R3-MYB transcription factor gene family in response abiotic stress, as a number of transcription factors have been reported to have a definite role in stress manifestation. We identified 185 R2R3 MYB genes at genome-wide level in A. marina and classified them based on the presence of conserved motifs in the protein sequences. Cis-regulatory elements (CREs) present in the promoter region of these genes were analysed to identify stress responsive elements. Comparative homology with genes from other plants provided an insight into the evolutionary changes in the A. marinaR2R3 MYB genes. In silico expression analysis revealed 34 AmR2R3 MYB genes that were differentially regulated in the leaves and root tissue of A. marina subjected to drought and salinity stress. This study is the first report of the R2R3 MYB gene family in the A. marina genome and will help in selecting candidates for further functional characterisation.


2019 ◽  
Author(s):  
Yuanming Li ◽  
Kui Lin-Wang ◽  
Zhen Liu ◽  
Andrew C. Allan ◽  
Junlian Zhang ◽  
...  

Abstract Background: MYB transcription factors comprise one of the largest families in plant kingdom, which play a variety of functions in plant developmental processes and defence responses. However, it has not been systematically studied in Potato (Solanum tuberosum), which is the most important non-cereal crop world-wide. Results: In the present study, a total of 108 StR2R3-MYB transcription factors were identified and further phylogenetically classified into 28 subfamilies, as supported by highly conserved gene structures and motifs. Collinearity analysis showed that the segmental duplication events played a crucial role in the expansion of StR2R3-MYB gene family. Synteny analysis indicated that 37 and 13 StR2R3-MYB genes were orthologous to Arabidopsis and wheat, respectively, and these gene pairs have evolved under strong purifying selection. RNA-seq data from different tissues and abiotic stresses revealed tissue-preferential and abiotic stress-responsive StR2R3-MYB genes. We further analyzed StR2R3-MYB genes might be involved in anthocyanin biosynthesis and drought stress by using RNA-seq data of pigmented tetraploid potato cultivars and drought-sensitive and -tolerant tetraploid potato cultivars under drought stress, respectively. Moreover, EAR motifs were found in 21 StR2R3-MYB proteins and 446 pairs of proteins were predicted to interact with 21 EAR motif-containing StR2R3-MYB proteins by constructing the interaction network with medium confidence (0.4). Additionally, Gene Ontology (GO) analysis of the 21 EAR motif-containing StR2R3-MYB proteins was performed to further investigate their functions. Conclusions: In this work, we systematically identified StR2R3-MYB genes by analyzing the potato genome sequence using a set of bioinformatics approaches. Genome-wide comparative analysis of StR2R3-MYB genes and their expression analysis identified members of this superfamily may be involved in tissue-specific development, anthocyanin biosynthesis and abiotic stress responses.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaojun Chang ◽  
Shupeng Xie ◽  
Lanlan Wei ◽  
Zhaolian Lu ◽  
Zhong-Hua Chen ◽  
...  

The R2R3-MYB transcription factors play critical roles in various processes in embryophytes (land plants). Here, we identified genes encoding R2R3-MYB proteins from rhodophytes, glaucophytes, Chromista, chlorophytes, charophytes, and embryophytes. We classified the R2R3-MYB genes into three subgroups (I, II, and III) based on their evolutionary history and gene structure. The subgroup I is the most ancient group that includes members from all plant lineages. The subgroup II was formed before the divergence of charophytes and embryophytes. The subgroup III genes form a monophyletic group and only comprise members from land plants with conserved exon–intron structure. Each subgroup was further divided into multiple clades. The subgroup I can be divided into I-A, I-B, I-C, and I-D. The I-A, I-B, and I-C are the most basal clades that have originated before the divergence of Archaeplastida. The I-D with the II and III subgroups form a monophyletic group, containing only green plants. The II and III subgroups form another monophyletic group with Streptophyta only. Once on land, the subgroup III genes have experienced two rounds of major expansions. The first round occurred before the origin of land plants, and the second round occurred after the divergence of land plants. Due to significant gene expansion, the subgroup III genes have become the predominant group of R2R3-MYBs in land plants. The highly unbalanced pattern of birth and death evolution of R2R3-MYB genes indicates their important roles in the successful adaptation and massive radiation of land plants to occupy a multitude of terrestrial environments.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yujiao Wang ◽  
Yong Zhang ◽  
Chunjie Fan ◽  
Yongcheng Wei ◽  
Jingxiang Meng ◽  
...  

Abstract Background MYB transcription factors are a kind of DNA binding protein that can specifically interact with the promoter region. Members of MYB TFs are widely involved in plant growth and development, secondary metabolism, stress response, and hormone signal transduction. However, there is no report of comprehensive bioinformatics analysis on the MYB family of Casuarina equisetifolia. Results In this study, bioinformatics methods were used to screen out 182 MYB transcription factors from the Casuarina equisetifolia genome database, including 69 1R-MYB, 107 R2R3-MYB, 4 R1R2R3-MYB, and 2 4R-MYB. The C. equisetifolia R2R3-MYB genes were divided into 29 groups based on the phylogenetic topology and the classification of the MYB superfamily in Arabidopsis thaliana, while the remaining MYB genes (1R-MYB, R1R2R3-MYB, and 4R-MYB) was divided into 19 groups. Moreover, the conserved motif and gene structure analysis shown that the members of the CeqMYBs were divided into the same subgroups with mostly similar gene structures. In addition, many conserved amino acids in the R2 and R3 domains of CeqMYBs by WebLogo analysis, especially tryptophan residues (W), with 3 conserved W in R2 repeat and 2 conserved W in R3 repeat. Combining promoter and GO annotation analysis, speculated on the various biological functions of CeqMYBs, thus 32 MYB genes were selected to further explore its response to salt stress by using qPCR analysis technique. Most CeqMYB genes were differentially regulated following multiple salt treatments. Conclusions Seven genes (CeqMYB164, CeqMYB4, CeqMYB53, CeqMYB32, CeqMYB114, CeqMYB71 and CeqMYB177) were assigned to the “response to salt stress” by GO annotation. Among them, the expression level of CeqMYB4 was up-regulated under various salt treatments, indicating CeqMYB4 might participated in the response to salt stress. Our results provide important information for the biological function of C. equisetifolia, as well as offer candidate genes for further study of salt stress mechanism.


2019 ◽  
Author(s):  
Yongbin Wang ◽  
Zhenfeng Jiang ◽  
Zhenxiang Li ◽  
Yuanling Zhao ◽  
Weiwei Tan ◽  
...  

Background. VQ proteins, the plant-specific transcription factors, are involved in the regulation of plant growth, development, and stress responses; however, few articles systematic reported VQ genes in the soybean. Methods. In total, we identified 75 GmVQ genes, which were classified into 7 groups (Ⅰ-Ⅶ). Conserved domain analysis indicated that VQ gene family members all contained the VQ domains. The VQ genes from the same evolutionary branches of soybean shared similar motifs and structures. Promoter analysis revealed cis-elements related to stress responses, phytohormone responses and controlling physical and reproductive growth. Based on the RNA-seq and qRT-PCR analysis, GmVQ genes were expressed in nine tissues suggested their putative function in many aspects of plant growth and development, and response to stresses in Glycine max. Results. The present study provided basic information for further analysis of the biological functions of GmVQ proteins in various development processes.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Ralf Stracke ◽  
Daniela Holtgräwe ◽  
Jessica Schneider ◽  
Boas Pucker ◽  
Thomas Rosleff Sörensen ◽  
...  

2017 ◽  
Vol 142 (3) ◽  
pp. 209-216 ◽  
Author(s):  
Ruigang Wu ◽  
Yi Wang ◽  
Ting Wu ◽  
Xuefeng Xu ◽  
Zhenhai Han

MYB (v-myb avian myeloblastosis viral oncogene homologs) transcription factors (TFs) are involved in diverse physiological processes, including cell shape determination, cell differentiation, and secondary metabolism, as well as abiotic stress response. In the present study, MdMYB4, an R2R3-MYB protein that is a homolog of Arabidopsis thaliana MYB4, was identified and characterized. Quantitative real-time polymerase chain reaction (qRT-PCR) expression analysis demonstrated that MdMYB4 is extensively expressed in various apple (Malus domestica) tissues and that its expression is induced by cold, osmotic, and salt stress. An MdMYB4-GFP fusion protein was localized in the nucleus of transformed onion (Allium cepa) epidermal cells and had a certain transcriptional activation activity by yeast one-hybrid assay. Overexpression of the MdMYB4 gene remarkably enhanced the tolerance of stably transgenic apple calli to severe salt and cold stress, and both the relative conductivity and malondialdehyde (MDA) accumulation of transgenic calli under salt and cold stress were significantly lower than in the wild type control. Taken together, these results suggest that MdMYB4 may play a positive regulatory role in both cold and salt stress responses.


Sign in / Sign up

Export Citation Format

Share Document