scholarly journals Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in Solanum Tuberosum

2019 ◽  
Author(s):  
Yuanming Li ◽  
Kui Lin-Wang ◽  
Zhen Liu ◽  
Andrew C. Allan ◽  
Junlian Zhang ◽  
...  

Abstract Background: MYB transcription factors comprise one of the largest families in plant kingdom, which play a variety of functions in plant developmental processes and defence responses. However, it has not been systematically studied in Potato (Solanum tuberosum), which is the most important non-cereal crop world-wide. Results: In the present study, a total of 108 StR2R3-MYB transcription factors were identified and further phylogenetically classified into 28 subfamilies, as supported by highly conserved gene structures and motifs. Collinearity analysis showed that the segmental duplication events played a crucial role in the expansion of StR2R3-MYB gene family. Synteny analysis indicated that 37 and 13 StR2R3-MYB genes were orthologous to Arabidopsis and wheat, respectively, and these gene pairs have evolved under strong purifying selection. RNA-seq data from different tissues and abiotic stresses revealed tissue-preferential and abiotic stress-responsive StR2R3-MYB genes. We further analyzed StR2R3-MYB genes might be involved in anthocyanin biosynthesis and drought stress by using RNA-seq data of pigmented tetraploid potato cultivars and drought-sensitive and -tolerant tetraploid potato cultivars under drought stress, respectively. Moreover, EAR motifs were found in 21 StR2R3-MYB proteins and 446 pairs of proteins were predicted to interact with 21 EAR motif-containing StR2R3-MYB proteins by constructing the interaction network with medium confidence (0.4). Additionally, Gene Ontology (GO) analysis of the 21 EAR motif-containing StR2R3-MYB proteins was performed to further investigate their functions. Conclusions: In this work, we systematically identified StR2R3-MYB genes by analyzing the potato genome sequence using a set of bioinformatics approaches. Genome-wide comparative analysis of StR2R3-MYB genes and their expression analysis identified members of this superfamily may be involved in tissue-specific development, anthocyanin biosynthesis and abiotic stress responses.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247864
Author(s):  
Pankaj Kumar ◽  
Pankaj Kumar ◽  
Dixit Sharma ◽  
Shailender Kumar Verma ◽  
Dennis Halterman ◽  
...  

Potato (Solanum tuberosum L.) is an important food crop that is grown and consumed worldwide. The growth and productivity of this crop are severely affected by various abiotic stresses. Basic leucine zipper (bZIP) transcription factors (TFs) in plants are well known for their function during growth and development. However, systematic and in-depth identification and functional characterization of the bZIP gene family of potato is lacking. In the current study, we identified a total of 90 bZIPs (StbZIP) distributed on 12 linkage groups of potato. Based on the previous functional annotation and classification of bZIPs in Arabidopsis, wheat, and rice, a phylogenetic tree of potato bZIPs was constructed and genes were categorized into various functional groups (A to I, S, and U) as previously annotated in Arabidopsis thaliana. Analyses of the transcript sequence (RNA-seq) data led to identifying a total of 18 candidate StbZIPs [four in roots, eight in the tuber, six in mesocarp and endocarp] that were expressed in a tissue-specific manner. Differential expression analysis under the various abiotic conditions (salt, mannitol, water, and heat stress) and treatment with phytohormones (ABA, GA, IAA, and BAP) led to the identification of forty-two [thirteen under salt stress, two under mannitol stress, ten under water stress, and eighteen under heat stress], and eleven [eight and three StbZIPs upon treatment with ABA, and IAA, respectively] candidate StbZIPs, respectively. Using sequence information of candidate StbZIPs, a total of 22 SSR markers were also identified in this study. In conclusion, the genome-wide identification analysis coupled with RNA-Seq expression data led to identifying candidate StbZIPs, which are dysregulated, and may play a pivotal role under various abiotic stress conditions. This study will pave the way for future functional studies using forward and reverse genetics to improve abiotic stress tolerance in potato.


2020 ◽  
Vol 21 (3) ◽  
pp. 975 ◽  
Author(s):  
Xiaojun Pu ◽  
Lixin Yang ◽  
Lina Liu ◽  
Xiumei Dong ◽  
Silin Chen ◽  
...  

MYB transcription factors (TFs) are one of the largest TF families in plants to regulate numerous biological processes. However, our knowledge of the MYB family in Physcomitrella patens is limited. We identified 116 MYB genes in the P. patens genome, which were classified into the R2R3-MYB, R1R2R3-MYB, 4R-MYB, and MYB-related subfamilies. Most R2R3 genes contain 3 exons and 2 introns, whereas R1R2R3 MYB genes contain 10 exons and 9 introns. N3R-MYB (novel 3RMYB) and NR-MYBs (novel RMYBs) with complicated gene structures appear to be novel MYB proteins. In addition, we found that the diversity of the MYB domain was mainly contributed by domain shuffling and gene duplication. RNA-seq analysis suggested that MYBs exhibited differential expression to heat and might play important roles in heat stress responses, whereas CCA1-like MYB genes might confer greater flexibility to the circadian clock. Some R2R3-MYB and CCA1-like MYB genes are preferentially expressed in the archegonium and during the transition from the chloronema to caulonema stage, suggesting their roles in development. Compared with that of algae, the numbers of MYBs have significantly increased, thus our study lays the foundation for further exploring the potential roles of MYBs in the transition from aquatic to terrestrial environments.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 401
Author(s):  
Zhen Liu ◽  
Yuhui Liu ◽  
Jeffrey A. Coulter ◽  
Baoyun Shen ◽  
Yuanming Li ◽  
...  

WD40 proteins, also known as WD40 domain proteins, constitute a large gene family in eukaryotes and play multiple roles in cellular processes. However, systematic identification and analysis of WD40 proteins have not yet been reported in potato (Solanum tuberosum L.). In the present study, 178 potato WD40 (StWD40) genes were identified and their distribution on chromosomes, gene structure, and conserved motifs were assessed. According to their structural and phylogenetic protein features, these 178 StWD40 genes were classified into 14 clusters and 10 subfamilies. Collinearity analysis showed that segmental duplication events played a major role in the expansion of the StWD40 gene family. Synteny analysis indicated that 45 and 23 pairs of StWD40 genes were orthologous to Arabidopsis and wheat (Triticum aestivum), respectively, and that these gene pairs evolved under strong purifying selection. RNA-seq data from different tissues and abiotic stresses revealed tissue-specific expression and abiotic stress-responsive StWD40 genes in doubled monoploid potato (DM). Furthermore, we further analyzed the WD40 genes might be involved in anthocyanin biosynthesis and drought stress in tetraploid potato cultivars based on RNA-seq data. In addition, a protein interaction network of two homologs of Arabidopsis TTG1, which is involved in anthocyanin biosynthesis, was constructed to identify proteins that might be related to anthocyanin biosynthesis. The result showed that there were 112 pairs of proteins interacting with TTG1, with 27 being differentially expressed in pigmented tissues. This study indicates that WD40 proteins in potato might be related to anthocyanin biosynthesis and abiotic stress responses.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Weihuang Wu ◽  
Sheng Zhu ◽  
Lin Xu ◽  
Liming Zhu ◽  
Dandan Wang ◽  
...  

Abstract Background Liriodendron chinense (Lchi) is a tree species within the Magnoliaceae family and is considered a basal angiosperm. The too low or high temperature or soil drought will restrict its growth as the adverse environmental conditions, thus improving L. chinense abiotic tolerance was the key issues to study. WRKYs are a major family of plant transcription factors known to often be involved in biotic and abiotic stress responses. So far, it is still largely unknown if and how the LchiWRKY gene family is tied to regulating L. chinense stress responses. Therefore, studying the involvement of the WRKY gene family in abiotic stress regulation in L. chinense could be very informative in showing how this tree deals with such stressful conditions. Results In this research, we performed a genome-wide analysis of the Liriodendron chinense (Lchi) WRKY gene family, studying their classification relationships, gene structure, chromosomal locations, gene duplication, cis-element, and response to abiotic stress. The 44 members of the LchiWRKY gene family contain a significant amount of sequence diversity, with their lengths ranging from 525 bp to 40,981 bp. Using classification analysis, we divided the 44 LchiWRKY genes into three phylogenetic groups (I, II, II), with group II then being further divided into five subgroups (IIa, IIb, IIc, IId, IIe). Comparative phylogenetic analysis including the WRKY families from 17 plant species suggested that LchiWRKYs are closely related to the Magnolia Cinnamomum kanehirae WRKY family, and has fewer family members than higher plants. We found the LchiWRKYs to be evenly distributed across 15 chromosomes, with their duplication events suggesting that tandem duplication may have played a major role in LchiWRKY gene expansion model. A Ka/Ks analysis indicated that they mainly underwent purifying selection and distributed in the group IId. Motif analysis showed that LchiWRKYs contained 20 motifs, and different phylogenetic groups contained conserved motif. Gene ontology (GO) analysis showed that LchiWRKYs were mainly enriched in two categories, i.e., biological process and molecular function. Two group IIc members (LchiWRKY10 and LchiWRKY37) contain unique WRKY element sequence variants (WRKYGKK and WRKYGKS). Gene structure analysis showed that most LchiWRKYs possess 3 exons and two different types of introns: the R- and V-type which are both contained within the WRKY domain (WD). Additional promoter cis-element analysis indicated that 12 cis-elements that play different functions in environmental adaptability occur across all LchiWRKY groups. Heat, cold, and drought stress mainly induced the expression of group II and I LchiWRKYs, some of which had undergone gene duplication during evolution, and more than half of which had three exons. LchiWRKY33 mainly responded to cold stress and LchiWRKY25 mainly responded to heat stress, and LchiWRKY18 mainly responded to drought stress, which was almost 4-fold highly expressed, while 5 LchiWRKYs (LchiWRKY5, LchiWRKY23, LchiWRKY14, LchiWRKY27, and LchiWRKY36) responded equally three stresses with more than 6-fold expression. Subcellular localization analysis showed that all LchiWRKYs were localized in the nucleus, and subcellular localization experiments of LchiWRKY18 and 36 also showed that these two transcription factors were expressed in the nucleus. Conclusions This study shows that in Liriodendron chinense, several WRKY genes like LchiWRKY33, LchiWRKY25, and LchiWRKY18, respond to cold or heat or drought stress, suggesting that they may indeed play a role in regulating the tree’s response to such conditions. This information will prove a pivotal role in directing further studies on the function of the LchiWRKY gene family in abiotic stress response and provides a theoretical basis for popularizing afforestation in different regions of China.


2018 ◽  
Vol 69 (10) ◽  
pp. 1009 ◽  
Author(s):  
Abdullahi Muhammad Labbo ◽  
Maryam Mehmood ◽  
Malik Nadeem Akhtar ◽  
Muhammad Jawad Khan ◽  
Aamira Tariq ◽  
...  

Mungbean (Vigna radiata L.) is a valuable legume crop grown in tropical and subtropical areas of Asia. Drought is one of the major factors hindering its growth globally. APETALA2/ethylene-responsive element factor binding proteins (AP2/ERF) are an important family of plant-specific transcription factors (TFs) involved in drought-stress tolerance. We identified 71 AP2/ERF TFs in the mungbean genome by using bioinformatics tools and classified them into subfamilies: AP2 (16 members), ERF (22), RAV (2), DREB (30) and soloist (other proteins with no domain, 1). Members of DREB play a critical role in drought-stress tolerance. Ten-day-old mungbean plants cv. AZRI-06 were exposed to drought stress by complete withholding of water for 7 days. Root samples were collected from control and drought-stressed plants, and the expression pattern of 30 identified VrDREB genes was determined by qPCR. Most VrDREB genes exhibited differential expression in response to drought. Five genes (VrDREB5, VrDREB12, VrDREB13, VrDREB22, VrDREB30) were highly expressed under drought stress and might be considered excellent candidates for further functional analysis and for improvement of mungbean drought tolerance.


2019 ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

Abstract Background: CCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation is unclear. Results: We knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, Zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, indicating tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explain why knockdown of CTCF lead to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes. Conclusions: To our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


Author(s):  
Bo Shu ◽  
YaChao Xie ◽  
Fei Zhang ◽  
Dejian Zhang ◽  
Chunyan Liu ◽  
...  

Calmodulin-like (CML) proteins represent a diverse family of protein in plants, and play significant roles in biotic and abiotic stress responses. However, the involvement of citrus CMLs in plant responses to drought stress (abiotic stress) and arbuscular mycorrhizal fungi (AMF) colonization remain relatively unknown. We characterized the citrus CML genes by analyzing the EF-hand domains and a genome-wide search, and identified a total of 38 such genes, distributed across at least nine chromosomes. Six tandem duplication clusters were observed in the CsCMLs, and 12 CsCMLs exhibited syntenic relationships with Arabidopsis thaliana CMLs. Gene expression analysis showed that 29 CsCMLs were expressed in the roots, and exhibited differential expression patterns. The regulation of CsCMLs expression was not consistent with the cis-elements identified in their promoters. CsCML2, 3, and 5 were upregulated in response to drought stress, and AMF colonization repressed the expression of CsCML7, 9, 12, 13,20, 27, 28, and 35,and induced that of CsCML1, 2, 3, 5, 8, 10, 11, 14, 15, 16, 18, 25, 30, 33, and 37. Furthermore, AMF colonization and drought stress exerted a synergistic effect, evident from the enhanced repression of CsCML7, 9, 12, 13, 27, 28, and 35 and enhanced expression of CsCML2, 3, and 5 under AMF colonization and drought stress. The present study provides valuable insights into the CsCML gene family and its responses to AMF colonization and drought stress.


Sign in / Sign up

Export Citation Format

Share Document