scholarly journals Overexpression of Barley Transcription Factor HvERF2.11 in Arabidopsis Enhances Plant Waterlogging Tolerance

2020 ◽  
Vol 21 (6) ◽  
pp. 1982
Author(s):  
Haiye Luan ◽  
Baojian Guo ◽  
Huiquan Shen ◽  
Yuhan Pan ◽  
Yi Hong ◽  
...  

Waterlogging stress significantly affects the growth, development, and productivity of crop plants. However, manipulation of gene expression to enhance waterlogging tolerance is very limited. In this study, we identified an ethylene-responsive factor from barley, which was strongly induced by waterlogging stress. This transcription factor named HvERF2.11 was 1158 bp in length and encoded 385 amino acids, and mainly expressed in the adventitious root and seminal root. Overexpression of HvERF2.11 in Arabidopsis led to enhanced tolerance to waterlogging stress. Further analysis of the transgenic plants showed that the expression of AtSOD1, AtPOD1 and AtACO1 increased rapidly, while the same genes did not do so in non-transgenic plants, under waterlogging stress. Activities of antioxidant enzymes and alcohol dehydrogenase (ADH) were also significantly higher in the transgenic plants than in the non-transgenic plants under waterlogging stress. Therefore, these results indicate that HvERF2.11 plays a positive regulatory role in plant waterlogging tolerance through regulation of waterlogging-related genes, improving antioxidant and ADH enzymes activities.

2020 ◽  
Vol 8 (11) ◽  
pp. 1807
Author(s):  
Sabine Leroy ◽  
Sergine Even ◽  
Pierre Micheau ◽  
Anne de La Foye ◽  
Valérie Laroute ◽  
...  

Staphylococcus xylosus is found in the microbiota of traditional cheeses, particularly in the rind of soft smeared cheeses. Despite its frequency, the molecular mechanisms allowing the growth and adaptation of S. xylosus in dairy products are still poorly understood. A transcriptomic approach was used to determine how the gene expression profile is modified during the fermentation step in a solid dairy matrix. S. xylosus developed an aerobic metabolism perfectly suited to the cheese rind. It overexpressed genes involved in the aerobic catabolism of two carbon sources in the dairy matrix, lactose and citrate. Interestingly, S. xylosus must cope with nutritional shortage such as amino acids, peptides, and nucleotides, consequently, an extensive up-regulation of genes involved in their biosynthesis was observed. As expected, the gene sigB was overexpressed in relation with general stress and entry into the stationary phase and several genes under its regulation, such as those involved in transport of anions, cations and in pigmentation were up-regulated. Up-regulation of genes encoding antioxidant enzymes and glycine betaine transport and synthesis systems showed that S. xylosus has to cope with oxidative and osmotic stresses. S. xylosus expressed an original system potentially involved in iron acquisition from lactoferrin.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2472-2472
Author(s):  
R. Katherine Hyde ◽  
Yasuhiko Kamikubo ◽  
Ling Zhao ◽  
Lemlem Alemu ◽  
Lisa Garrett ◽  
...  

Abstract Abstract 2472 RKH, YK, and LZ all contributed equally to this work Inv(16) is found in nearly all patients with acute myeloid leukemia (AML) subtype M4Eo. Inv(16) results in the fusion of the transcription factor gene CBFB, and the MYH11 gene, which encodes Smooth Muscle Myosin Heavy Chain (SMMHC). This results in the fusion gene CBFB-MYH11, which encodes CBFβ-SMMHC. Previously we showed that knock-in mice with a single allele of Cbfb-MYH11 (Cbfb+/MYH11) have severe differentiation defects in primitive hematopoiesis and a total block in definitive hematopoiesis. In addition, chimeric mice generated from Cbfb+/MYH11 ES cells consistently developed leukemia within a few months after treatment with the mutagen N-ethyl-N-nitrosourea (ENU). It is currently not clear which functional domains of CBFβ-SMMHC are responsible for its activity in differentiation and leukemogenesis. In vitro experiments have indicated that CBFβ-SMMHC can form multimeric complexes via the C terminal domain. It has been postulated that this multimerization may be important for the function of CBFβ-SMMHC by resulting in large macromolecular complexes and/or sequestration of its binding partner, the transcription factor RUNX1. To determine the importance of this domain in vivo, we generated knock-in mice expressing a mutant Cbfb-MYH11 allele with a deletion of the 95 C-terminal amino acids (Cbfb+/MYH11ΔC95). In analysis of primitive hematopoiesis, we found that Cbfb+/MYH11ΔC95 and CbfbMYH11ΔC95/MYH11ΔC95 mice had no or very mild differentiation defects, statistically significantly less severe (p<.05) than seen in embryos expressing full-length Cbfb-MYH11. During definitive hematopoesis, there were no observable defects in Cbfb+/MYH11ΔC95 mice, but CbfbMYH11ΔC95/MYH11ΔC95 embryos showed a complete block in definitive hematopoiesis, as seen in mice expressing a single allele of full length Cbfb-MYH11. This indicates that Cbfb-MYH11ΔC95 is less effective in blocking differentiation than the full length fusion gene. Interestingly, both the primitive and definitive embryonic blood phenotypes of the CbfbMYH11ΔC95/MYH11ΔC95 were similar to that observed in embryos lacking functional Cbfb (Cbfb−/−), implying that Cbfb-MYH11ΔC95 may act as a null allele. To test this possibility we used gene expression microarrays to compare gene expression profiles in the peripheral blood from embryonic day 12 CbfbMYH11ΔC95/MYH11ΔC95, Cbfb−/−, and Cbfb+/MYH11, as well as their Cbfb+/+ littermates. Surprisingly, CbfbMYH11ΔC95/MYH11ΔC95 embryos showed deregulated expression of a distinct gene set as compared to both Cbfb−/− and Cbfb+/MYH11 embryos. This implies that Cbfb-MYH11ΔC95 is not a null allele of Cbfb, and likely retains some, but not all, of the neomorph properties of full length Cbfb-MYH11. Consistent with this finding, we observe the accumulation of abnormal myeloid cells in some adult Cbfb+/MYH11ΔC95 mice after ENU treatment, which has not been reported in Cbfb+/− mice. However, we found that Cbfb-MYH11ΔC95 has not retained the most critical of the fusion gene's activities: the ability to induce leukemogenesis. Importantly, none of the Cbfb+/MYH11ΔC95 mice developed leukemia after treatment with ENU. This is in contrast to mice expressing full length Cbfb-MYH11, which all develop leukemia under these conditions. Together, these results indicate that the 95 C-terminal amino acids of CBFβ-SMMHC are required for both embryonic hematopoietic defects and leukemogenesis. Disclosures: No relevant conflicts of interest to declare.


Development ◽  
2002 ◽  
Vol 129 (19) ◽  
pp. 4387-4397
Author(s):  
Fiona C. Wardle ◽  
Daniel H. Wainstock ◽  
Hazel L. Sive

The cement gland marks the extreme anterior ectoderm of the Xenopus embryo, and is determined through the overlap of several positional domains. In order to understand how these positional cues activate cement gland differentiation, the promoter of Xag1, a marker of cement gland differentiation, was analyzed. Previous studies have shown that Xag1 expression can be activated by the anterior-specific transcription factor Otx2, but that this activation is indirect. 102 bp of upstream genomic Xag1 sequence restricts reporter gene expression specifically to the cement gland. Within this region, putative binding sites for Ets and ATF/CREB transcription factors are both necessary and sufficient to drive cement gland-specific expression, and cooperate to do so. Furthermore, while the putative ATF/CREB factor is activated by Otx2, a factor acting through the putative Ets-binding site is not. These results suggest that Ets-like and ATF/CREB-like family members play a role in regulating Xag1 expression in the cement gland, through integration of Otx2 dependent and independent pathways.


2021 ◽  
Author(s):  
Colin Kenny ◽  
Ramile Dilshat ◽  
Hannah Seberg ◽  
Eric Van Otterloo ◽  
Gregory Bonde ◽  
...  

Transcription factors in the Activating-enhancer-binding Protein 2 (TFAP2) family redundantly regulate gene expression in melanocytes and melanoma. Previous ChIP-seq experiments indicate that TFAP2A and Microphthalmia-associated Transcription Factor (MITF), a master regulator in these cell types, co-activate enhancers of genes promoting pigmentation. Evidence that TFAP2 paralogs can serve as pioneer factors supports the possibility that TFAP2 facilitates MITF binding at co-bound enhancers, although this model has not been tested. In addition, while MITF and TFAP2 paralogs both appear to repress genes that promote invasion, whether they do so by co-repressing enhancers is unknown. To address these questions we evaluated gene expression, chromatin accessibility, TFAP2A and MITF binding, and chromatin marks characteristic of active enhancers in SK-MEL-28 melanoma cells that were wild-type or deleted of the two TFAP2 paralogs with highest expression, TFAP2A and TFAP2C (i.e., TFAP2-KO cells). Integrated analyses revealed distinct subsets of enhancers bound by TFAP2A in WT cells that are inactivated and activated, respectively, in TFAP2-KO cells. At enhancers bound by both MITF and TFAP2A, MITF is generally lost in TFAP2A/TFAP2C double mutants, but not vice versa, implying TFAP2 pioneers chromatin access for MITF. There is a strong correlation between the sets of genes inhibited by MITF and TFAP2, although we did not find evidence that TFAP2 and MITF inhibit enhancers cooperatively. The findings imply that MITF and TFAP2 paralogs cooperatively affect the melanoma phenotype.


2020 ◽  
Vol 189 ◽  
pp. 02007
Author(s):  
Wei Gao ◽  
Dongmei Yin ◽  
Zhuqing Han

The effects of waterlogging on antioxidant enzyme activities responses in five different lines, i.e. ABA-deficient mutant (0673) and its control (0535), two ABA over-production transgenic rd29A:NCED1 lines (#2, #7) and Mill. L. cv. New Yorker (WT) were investigated. The waterlogging was mimicked by treating pot plants with flooding. The malondialdehyde (MDA) content, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activity in the leaves were evaluated in all treatments. The results showed that after 7 days waterlogging treatment, the malondialdehyde (MDA) was increased in all plants, especially in LA0673. Compared with the LA0673, #2 and #7 significantly increase the activities of SOD, POD and CAT under waterlogging stress. Therefore, ABA could improve the waterlogging tolerance of tomato by increasing the activities of antioxidant enzymes under waterlogging stress.


2000 ◽  
Vol 20 (19) ◽  
pp. 7192-7204 ◽  
Author(s):  
Alain Bruhat ◽  
Céline Jousse ◽  
Valérie Carraro ◽  
Andreas M. Reimold ◽  
Marc Ferrara ◽  
...  

ABSTRACT In mammals, plasma concentration of amino acids is affected by nutritional or pathological conditions. It has been well established that nutrients, and particularly amino acids, are involved in the control of gene expression. Here we examined the molecular mechanisms involved in the regulation ofCHOP (a CCAAT/enhancer-binding protein [C/EBP]-related gene) expression upon amino acid limitation. We have previously shown that regulation of CHOP mRNA expression by amino acid concentration has both transcriptional and posttranscriptional components. We report the analysis ofcis- and trans-acting elements involved in the transcriptional activation of the human CHOPgene by leucine starvation. Using a transient expression assay, we show that a cis-positive element is essential for amino acid regulation of the CHOP promoter. This sequence is the first described that can regulate a basal promoter in response to starvation for several individual amino acids and therefore can be called an amino acid response element (AARE). In addition, we show that the CHOP AARE is related to C/EBP and ATF/CRE binding sites and binds in vitro the activating transcription factor 2 (ATF-2) in starved and unstarved conditions. Using ATF-2-deficient mouse embryonic fibroblasts and an ATF-2-dominant negative mutant, we demonstrate that expression of this transcription factor is essential for the transcriptional activation of CHOP by leucine starvation. Altogether, these results suggest that ATF-2 may be a member of a cascade of molecular events by which the cellular concentration of amino acids can regulate mammalian gene expression.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 240
Author(s):  
Ana Borrego-Benjumea ◽  
Adam Carter ◽  
James R. Tucker ◽  
Zhen Yao ◽  
Wayne Xu ◽  
...  

Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding, the genome-wide gene expression responses in roots of waterlogged barley seedlings of Yerong and Deder2 were analyzed by RNA-Sequencing. A total of 6736, 5482, and 4538 differentially expressed genes (DEGs) were identified in waterlogged roots of Yerong at 72 h and Deder2 at 72 and 120 h, respectively, compared with the non-waterlogged control. Gene Ontology (GO) enrichment analyses showed that the most significant changes in GO terms, resulted from these DEGs observed under waterlogging stress, were related to primary and secondary metabolism, regulation, and oxygen carrier activity. In addition, more than 297 transcription factors, including members of MYB, AP2/EREBP, NAC, WRKY, bHLH, bZIP, and G2-like families, were identified as waterlogging responsive. Tentative important contributors to waterlogging tolerance in Deder2 might be the highest up-regulated DEGs: Trichome birefringence, α/β-Hydrolases, Xylanase inhibitor, MATE efflux, serine carboxypeptidase, and SAUR-like auxin-responsive protein. The study provides insights into the molecular mechanisms underlying the response to waterlogging in barley, which will be of benefit for future studies of molecular responses to waterlogging and will greatly assist barley genetic research and breeding.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4434 ◽  
Author(s):  
Wencai Fan ◽  
Ying Yang ◽  
Zhiquan Wang ◽  
Yunlong Yin ◽  
Chaoguang Yu ◽  
...  

As a subfamily of the APETALA 2/ethylene response element binding protein (AP2/EREBP) transcription factor superfamily, the ethylene response factor (ERF) is widely involved in the regulation of growth and response to various abiotic stresses in plants, and has been shown to be the main transcription factor regulating transcription of the genes related to hypoxia and waterlogging stress. In this study, threeThERFgenes, with significant differences in expression profile in response to flooding stress, were identified from the transcriptomics data acquired fromTaxodiumhybrid ‘Zhongshanshan 406’ (T. mucronatumTenore ×T. distichum(L.) Rich) under waterlogging stress:ThERF15, ThERF39 and ThRAP2.3(GenBank ID:KY463467,KY463468andKY463470, respectively).The full-length cDNA of each of the threeERFs was obtained using the RACE (rapid amplification cDNA ends) method, and all three were intron-free. Multiple protein sequence alignments indicated that ThERF15, ThERF39 and ThRAP2.3 proteins all had only one AP2-ERF domain and belonged to the ERF subfamily. A transient gene expression assay demonstrated that ThERF15, ThERF39 and ThRAP2.3 were all localized to the nucleus. Real-time quantitative PCR (qPCR) revealed that the expression ofThERF15, ThERF39 and ThRAP2.3exhibited significant differences, compared with the control, in response to two levels of flooding treatment (half-flooding or total-submergence) of ‘Zhongshanshan 406’. Quantification of ethylene concentration revealed that ethylene was more relevant to the level of expression than the period of flooding treatment. Based on the experimental results above,ThERF15, ThERF39andThRAP2.3were identified as being related to the regulation of downstream flooding- responsive gene expression in ‘Zhongshanshan 406’.ThRAP2.3is most likely to be a key downstream-response ERF gene to respond to the output of the ethylene signal generated by flooding stress.


2018 ◽  
Author(s):  
Golaleh Asghari ◽  
Emad Yuzbashian ◽  
Maryam Zarkesh ◽  
Parvin Mirmiran ◽  
Mehdi Hedayati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document