scholarly journals Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases

2020 ◽  
Vol 21 (6) ◽  
pp. 2187 ◽  
Author(s):  
Taejoon Kim ◽  
Bokyeong Song ◽  
Kyoung Sang Cho ◽  
Im-Soon Lee

Forest trees are a major source of biogenic volatile organic compounds (BVOCs). Terpenes and terpenoids are known as the main BVOCs of forest aerosols. These compounds have been shown to display a broad range of biological activities in various human disease models, thus implying that forest aerosols containing these compounds may be related to beneficial effects of forest bathing. In this review, we surveyed studies analyzing BVOCs and selected the most abundant 23 terpenes and terpenoids emitted in forested areas of the Northern Hemisphere, which were reported to display anti-inflammatory activities. We categorized anti-inflammatory processes related to the functions of these compounds into six groups and summarized their molecular mechanisms of action. Finally, among the major 23 compounds, we examined the therapeutic potentials of 12 compounds known to be effective against respiratory inflammation, atopic dermatitis, arthritis, and neuroinflammation among various inflammatory diseases. In conclusion, the updated studies support the beneficial effects of forest aerosols and propose their potential use as chemopreventive and therapeutic agents for treating various inflammatory diseases.

2021 ◽  
Vol 12 ◽  
Author(s):  
Luxi Yang ◽  
Qing Ge ◽  
Zhitong Ye ◽  
Lijing Wang ◽  
Liping Wang ◽  
...  

Periodontitis is one of the most prevalent oral inflammatory diseases leading to teeth loss and oral health problems in adults. Periodontitis mainly affects periodontal tissue by affecting the host immune system and bone homeostasis. Moreover, periodontitis is associated with various systemic diseases. Diabetes is a metabolic disease with systemic effects. Both periodontitis and diabetes are common inflammatory diseases, and comorbidity of two diseases is linked to exacerbation of the pathophysiology of both diseases. Since bacterial dysbiosis is mainly responsible for periodontitis, antibiotics are widely used drugs to treat periodontitis in clinics. However, the outcomes of antibiotic treatments in periodontitis are not satisfactory. Therefore, the application of anti-inflammatory drugs in combination with antibiotics could be a treatment option for periodontitis-diabetes comorbidity. Anti-diabetic drugs usually have anti-inflammatory properties and have shown beneficial effects on periodontitis. Sulfonylureas, insulin secretagogues, are the earliest and most widely used oral hypoglycemic drugs used for type-2 diabetes. Studies have found that sulfonylurea drugs can play a certain role in the mitigation of periodontitis and inflammation. This article reviews the effects of sulfonylurea drugs on the mitigation of periodontitis-diabetes comorbidity-related inflammation, bone loss, and vascular growth as well as the involved molecular mechanisms. We discuss the possibility of a new application of sulfonylureas (old drug) to treat periodontitis-diabetes comorbidity.


2021 ◽  
Vol 21 (7) ◽  
pp. 4098-4103
Author(s):  
Hae-Jung Chae ◽  
Jong Bae Seo ◽  
Sung-Hak Kim ◽  
Ei Joung Youn ◽  
Sanghee Kim ◽  
...  

Inflammation mediated by the innate immune system is the organism’s protective mechanism against infectious environmental risk factors. Uncontrolled acute inflammation can become chronic, contributing to various chronic inflammatory diseases such as arthritis, asthma, autoimmune diseases, and atherosclerosis. Although microalgae are increasingly receiving attention as a source of bioactive molecules with therapeutic potential for various human diseases, the underlying mechanisms are not yet well understood. In the present study, we investigated the molecular mechanisms underlying the anti-inflammatory and anti-aging activities of ethanol extracts of Antarctic freshwater microalga Micractinium simplicissimum. Using RAW 264.7 macrophages, microalgal extracts exerted anti-inflammatory activity by regulating the major inflammatory indicators including cyclooxy-genase (COX)-2, interleukin (IL)-6, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α and nitric oxide (NO). Besides, we observed the anti-aging activity of the microalgal extract by suppressing MMP-1 production in human dermal fibroblast. Taken together, these data suggest that anti-inflammatory and anti-aging activities of Antarctic freshwater microalga, Micractinium simplicissimum, can provide new clues to understanding the molecular link between inflammation and diseases, and be a potential anti-inflammatory agent.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Joice Nascimento Barboza ◽  
Carlos da Silva Maia Bezerra Filho ◽  
Renan Oliveira Silva ◽  
Jand Venes R. Medeiros ◽  
Damião Pergentino de Sousa

The bioactive compounds found in foods and medicinal plants are attractive molecules for the development of new drugs with action against several diseases, such as those associated with inflammatory processes, which are commonly related to oxidative stress. Many of these compounds have an appreciable inhibitory effect on oxidative stress and inflammatory response, and may contribute in a preventive way to improve the quality of life through the use of a diet rich in these compounds. Eugenol is a natural compound that has several pharmacological activities, action on the redox status, and applications in the food and pharmaceutical industry. Considering the importance of this compound, the present review discusses its anti-inflammatory and antioxidant properties, demonstrating its mechanisms of action and therapeutic potential for the treatment of inflammatory diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Young-Sun Lee ◽  
Hee-Sook Jun

Glucagon-like peptide-1 (GLP-1) is an incretin hormone mainly secreted from intestinal L cells in response to nutrient ingestion. GLP-1 has beneficial effects for glucose homeostasis by stimulating insulin secretion from pancreatic beta-cells, delaying gastric emptying, decreasing plasma glucagon, reducing food intake, and stimulating glucose disposal. Therefore, GLP-1-based therapies such as GLP-1 receptor agonists and inhibitors of dipeptidyl peptidase-4, which is a GLP-1 inactivating enzyme, have been developed for treatment of type 2 diabetes. In addition to glucose-lowering effects, emerging data suggests that GLP-1-based therapies also show anti-inflammatory effects in chronic inflammatory diseases including type 1 and 2 diabetes, atherosclerosis, neurodegenerative disorders, nonalcoholic steatohepatitis, diabetic nephropathy, asthma, and psoriasis. This review outlines the anti-inflammatory actions of GLP-1-based therapies on diseases associated with chronic inflammationin vivoandin vitro, and their molecular mechanisms of anti-inflammatory action.


2021 ◽  
Vol 23 (1) ◽  
pp. 92
Author(s):  
Thanasekaran Jayakumar ◽  
Kao-Chang Lin ◽  
Chao-Chien Chang ◽  
Chih-Wei Hsia ◽  
Manjunath Manubolu ◽  
...  

Studies have discovered that different extracts of Evodia rutaecarpa and its phytochemicals show a variety of biological activities associated with inflammation. Although rutaecarpine, an alkaloid isolated from the unripe fruit of E. rutaecarpa, has been exposed to have anti-inflammatory properties, the mechanism of action has not been well studied. Thus, this study investigated the molecular mechanisms of rutaecarpine (RUT) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. RUT reserved the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF-α), and interleukin (IL)-1β in the LPS-induced macrophages. RUT showed an inhibitory effect on the mitogen-activated protein kinases (MAPKs), and it also inhibited nuclear transcription factor kappa-B (NF-κB) by hindering IκBα and NF-κB p65 phosphorylation and p65 nuclear translocation. The phospho-PI3K and Akt was concentration-dependently suppressed by RUT. However, RUT not only suggestively reduced the migratory ability of macrophages and their numbers induced by LPS but also inhibited the phospho-Src, and FAK. Taken together, these results indicate that RUT participates a vital role in the inhibition of LPS-induced inflammatory processes in RAW 264.7 macrophages and that the mechanisms involve PI3K/Akt and MAPK-mediated downregulation of NF-κB signaling pathways. Notably, reducing the migration and number of cells induced by LPS via inhibiting of Src/FAK pathway was also included to the anti-inflammatory mechanism of RUT. Therefore, RUT may have potential benefits as a therapeutic agent against chronic inflammatory diseases.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2963 ◽  
Author(s):  
Hebaallah Mamdouh Hashiesh ◽  
M.F. Nagoor Meeran ◽  
Charu Sharma ◽  
Bassem Sadek ◽  
Juma Al Kaabi ◽  
...  

Diabetes mellitus (DM), a metabolic disorder is one of the most prevalent chronic diseases worldwide across developed as well as developing nations. Hyperglycemia is the core feature of the type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), following insulin deficiency and impaired insulin secretion or sensitivity leads insulin resistance (IR), respectively. Genetic and environmental factors attributed to the pathogenesis of DM and various therapeutic strategies are available for the prevention and treatment of T2DM. Among the numerous therapeutic approaches, the health effects of dietary/nutraceutical approach due to the presence of bioactive constituents, popularly termed phytochemicals are receiving special interest for pharmacological effects and therapeutic benefits. The phytochemicals classes, in particular sesquiterpenes received attention because of potent antioxidant, anti-inflammatory, and antihyperglycemic effects and health benefits mediating modulation of enzymes, receptors, and signaling pathways deranged in DM and its complications. One of the terpene compounds, β-caryophyllene (BCP), received enormous attention because of its abundant occurrence, non-psychoactive nature, and dietary availability through consumption of edible plants including spices. BCP exhibit selective full agonism on cannabinoid receptor type 2 (CB2R), an important component of endocannabinoid system, and plays a role in glucose and lipid metabolism and represents the newest drug target for chronic inflammatory diseases. BCP also showed agonist action on peroxisome proliferated activated receptor subtypes, PPAR-α and PPAR-γ, the main target of currently used fibrates and imidazolidinones for dyslipidemia and IR, respectively. Many studies demonstrated its antioxidant, anti-inflammatory, organoprotective, and antihyperglycemic properties. In the present review, the plausible therapeutic potential of BCP in diabetes and associated complications has been comprehensively elaborated based on experimental and a few clinical studies available. Further, the pharmacological and molecular mechanisms of BCP in diabetes and its complications have been represented using synoptic tables and schemes. Given the safe status, abundant natural occurrence, oral bioavailability, dietary use and pleiotropic properties modulating receptors and enzymes, BCP appears as a promising molecule for diabetes and its complications.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 503 ◽  
Author(s):  
Anke Müller ◽  
Lisa Schmölz ◽  
Maria Wallert ◽  
Martin Schubert ◽  
Wiebke Schlörmann ◽  
...  

Nut consumption is known for its health benefits, in particular in inflammatory diseases. A possible mechanism for these effects could be their beneficial fatty acid composition. Nuts mainly contain mono- and polyunsaturated fatty acids, which have anti-inflammatory properties. However, studies investigating the effects of nut extracts on inflammatory processes on the molecular level are rare. We therefore prepared oily nut extracts after in vitro digestion and saponification of the fat-soluble constituents. Besides chromatographic analysis, cell culture experiments were performed using murine macrophages (RAW264.7) to study the capacity of different nut extracts (hazelnut, almond, walnut, macadamia, and pistachio) to modulate inflammatory processes. Oleic acid was the main fatty acid in hazelnut, almond, macadamia, and pistachio extracts. Both oily nut extracts and pure oleic acid significantly reduced the LPS-induced expression of iNos, Cox2, Tnfα, Il1β, and Il6 mRNAs. iNos protein expression was down-regulated followed by reduced nitric oxide formation. Thus, nut extracts at concentrations achievable in the digestive tract inhibit the expression and formation of inflammatory mediators in macrophages. Hence, a beneficial contribution of nut consumption to inflammatory diseases can be assumed. We are convinced that these results provide new insights on the molecular mechanisms involved in the health-beneficial effects of nuts.


Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 531
Author(s):  
Javier Ávila-Román ◽  
Sara García-Gil ◽  
Azahara Rodríguez-Luna ◽  
Virginia Motilva ◽  
Elena Talero

Acute inflammation is a key component of the immune system’s response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.


2020 ◽  
Vol 11 ◽  
Author(s):  
Natalie Vivien Gunter ◽  
Soek Sin Teh ◽  
Yang Mooi Lim ◽  
Siau Hui Mah

The pathogenesis of skin inflammatory diseases such as atopic dermatitis, acne, psoriasis, and skin cancers generally involve the generation of oxidative stress and chronic inflammation. Exposure of the skin to external aggressors such as ultraviolet (UV) radiation and xenobiotics induces the generation of reactive oxygen species (ROS) which subsequently activates immune responses and causes immunological aberrations. Hence, antioxidant and anti-inflammatory agents were considered to be potential compounds to treat skin inflammatory diseases. A prime example of such compounds is xanthone (xanthene-9-one), a class of natural compounds that possess a wide range of biological activities including antioxidant, anti-inflammatory, antimicrobial, cytotoxic, and chemotherapeutic effects. Many studies reported various mechanisms of action by xanthones for the treatment of skin inflammatory diseases. These mechanisms of action commonly involve the modulation of various pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor α (TNF-α), as well as anti-inflammatory cytokines such as IL-10. Other mechanisms of action include the regulation of NF-κB and MAPK signaling pathways, besides immune cell recruitment via modulation of chemokines, activation, and infiltration. Moreover, disease-specific activity contributed by xanthones, such as antibacterial action against Propionibacterium acnes and Staphylococcus epidermidis for acne treatment, and numerous cytotoxic mechanisms involving pro-apoptotic and anti-metastatic effects for skin cancer treatment have been extensively elucidated. Furthermore, xanthones have been reported to modulate pathways responsible for mediating oxidative stress and inflammation such as PPAR, nuclear factor erythroid 2-related factor and prostaglandin cascades. These pathways were also implicated in skin inflammatory diseases. Xanthones including the prenylated α-mangostin (2) and γ-mangostin (3), glucosylated mangiferin (4) and the caged xanthone gambogic acid (8) are potential lead compounds to be further developed into pharmaceutical agents for the treatment of skin inflammatory diseases. Future studies on the structure-activity relationships, molecular mechanisms, and applications of xanthones for the treatment of skin inflammatory diseases are thus highly recommended.


2021 ◽  
Vol 12 ◽  
Author(s):  
José Carlos Bozelli ◽  
Sayed Azher ◽  
Richard M. Epand

It is becoming widely acknowledged that lipids play key roles in cellular function, regulating a variety of biological processes. Lately, a subclass of glycerophospholipids, namely plasmalogens, has received increased attention due to their association with several degenerative and metabolic disorders as well as aging. All these pathophysiological conditions involve chronic inflammatory processes, which have been linked with decreased levels of plasmalogens. Currently, there is a lack of full understanding of the molecular mechanisms governing the association of plasmalogens with inflammation. However, it has been shown that in inflammatory processes, plasmalogens could trigger either an anti- or pro-inflammation response. While the anti-inflammatory response seems to be linked to the entire plasmalogen molecule, its pro-inflammatory response seems to be associated with plasmalogen hydrolysis, i.e., the release of arachidonic acid, which, in turn, serves as a precursor to produce pro-inflammatory lipid mediators. Moreover, as plasmalogens comprise a large fraction of the total lipids in humans, changes in their levels have been shown to change membrane properties and, therefore, signaling pathways involved in the inflammatory cascade. Restoring plasmalogen levels by use of plasmalogen replacement therapy has been shown to be a successful anti-inflammatory strategy as well as ameliorating several pathological hallmarks of these diseases. The purpose of this review is to highlight the emerging role of plasmalogens in chronic inflammatory disorders as well as the promising role of plasmalogen replacement therapy in the treatment of these pathologies.


Sign in / Sign up

Export Citation Format

Share Document