scholarly journals Functional Analysis of Differentially Expressed Acetylated Spermatozoal Proteins in Infertile Men with Unilateral and Bilateral Varicocele

2020 ◽  
Vol 21 (9) ◽  
pp. 3155 ◽  
Author(s):  
Manesh Kumar Panner Selvam ◽  
Luna Samanta ◽  
Ashok Agarwal

Sperm proteins undergo post-translational modifications, such as phosphorylation, acetylation, and ubiquitination, which in turn play a key role in determining their fertilizing ability. In the current study, we examined the sperm proteome of men with unilateral and bilateral varicocele to identify the key proteins affected by acetylation to gain an insight into the difference in the severity of affected sperm function in the latter. An LTQ-Orbitrap Elite hybrid mass spectrometer system was used to profile the sperm proteome in pooled unilateral and bilateral varicocele patients. Bioinformatics database and tools, such as UniProtKB, Ingenuity Pathway Analysis Software (IPA) and Metacore, were used to identify the differentially expressed proteins (DEPs) involved in the acetylation process. A total of 135 DEPs in the spermatozoa of unilateral and bilateral varicocele patients were found to be affected by acetylation. The majority of these DEPs found were regulated by key transcription factors such as androgen receptor, p53, and NRF2. Furthermore, the DEPs predicted to be affected by the acetylation process were associated with fertilization, acrosome reaction, mitochondrial dysfunction and oxidative stress. Aberrant expression of proteins and their differential acetylation process may affect the normal physiological functions of spermatozoa. Protein–protein interactions identified dysregulation of the proteasome complex in the bilateral varicocele group. Damage to the proteasome complex may result in aggregation of the misfolded proteins, which in turn increase sperm DNA damage and apoptosis in patients with bilateral varicocele.

2020 ◽  
Vol 27 (37) ◽  
pp. 6306-6355 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background:: Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs). Objective:: This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field. Method:: Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed. Results and Conclusion:: PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.


2020 ◽  
Author(s):  
Nan Zhou ◽  
Jinku Bao ◽  
Yuping Ning

Abstract The ongoing COVID-19 pandemic in the world is caused by SARS-CoV-2, a new coronavirus firstly discovered in the end of 2019. It has led to more than 10 million confirmed cases and more than 500,000 confirmed deaths across 216 countries by 1 July 2020, according to WHO statistics. SARS-CoV-2, SARS-CoV, and MERS-CoV are alike, killing people, impairing economy, and inflicting long-term impacts on the society. However, no specific drug or vaccine has been approved as a cure for these viruses. The efforts to develop antiviral measures are hampered by insufficient understanding of molecular responses of human to viral infections. In this study, we collected experimentally validated human proteins that interact with SARS-CoV-2 proteins, human proteins whose expression, translation and phosphorylation levels experience significantly changes after SARS-CoV-2 or SARS-CoV infection, human proteins that correlate with COVID-19 severity, and human genes whose expression levels significantly changed upon SARS-CoV-2 or MERS-CoV infection. A database, H2V, was then developed for easy access to these data. Currently H2V includes: 332 human-SARS-CoV-2 protein-protein interactions; 65 differentially expressed proteins, 232 differentially translated proteins, 1298 differentially phosphorylated proteins, 204 severity associated proteins, and 4012 differentially expressed genes responding to SARS-CoV-2 infection; 66 differentially expressed proteins responding to SARS-CoV infection; and 6981 differentially expressed genes responding to MERS-CoV infection. H2V can help to understand the cellular responses associated with SARS-CoV-2, SARS-CoV and MERS-CoV infection. It is expected to speed up the development of antiviral agents and shed light on the preparation for potential coronavirus emergency in the future.Database url: http://www.zhounan.org/h2v


2021 ◽  
Vol 17 (5) ◽  
pp. e1008988
Author(s):  
Nikolina ŠoŠtarić ◽  
Vera van Noort

Post-translational modifications (PTMs) play a vital, yet often overlooked role in the living cells through modulation of protein properties, such as localization and affinity towards their interactors, thereby enabling quick adaptation to changing environmental conditions. We have previously benchmarked a computational framework for the prediction of PTMs’ effects on the stability of protein-protein interactions, which has molecular dynamics simulations followed by free energy calculations at its core. In the present work, we apply this framework to publicly available data on Saccharomyces cerevisiae protein structures and PTM sites, identified in both normal and stress conditions. We predict proteome-wide effects of acetylations and phosphorylations on protein-protein interactions and find that acetylations more frequently have locally stabilizing roles in protein interactions, while the opposite is true for phosphorylations. However, the overall impact of PTMs on protein-protein interactions is more complex than a simple sum of local changes caused by the introduction of PTMs and adds to our understanding of PTM cross-talk. We further use the obtained data to calculate the conformational changes brought about by PTMs. Finally, conservation of the analyzed PTM residues in orthologues shows that some predictions for yeast proteins will be mirrored to other organisms, including human. This work, therefore, contributes to our overall understanding of the modulation of the cellular protein interaction networks in yeast and beyond.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Humza A. Khan ◽  
Manish J. Butte

Abstract Background Inborn errors of immunity (IEI) are a group of genetic disorders that impair the immune system, with over 400 genes described so far, and hundreds more to be discovered. To facilitate the search for new genes, we need a way to prioritize among all the genes in the genome those most likely to play an important role in immunity. Results Here we identify a new list of genes by linking known IEI genes to new ones by using open-source databases of protein-protein interactions, post-translational modifications, and transcriptional regulation. We analyze this new set of 2,530 IEI-related genes for their tolerance of genetic variation and by their expression levels in various immune cell types. Conclusions By merging genes derived from protein interactions of known IEI genes with transcriptional data, we offer a new list of candidate genes that may play a role in as-yet undiscovered IEIs.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 207 ◽  
Author(s):  
Stephen R. Johnson ◽  
Hillary G. Rikli

Research in toxinology has created a pharmacological paradox. With an estimated 220,000 venomous animals worldwide, the study of peptidyl toxins provides a vast number of effector molecules. However, due to the complexity of the protein-protein interactions, there are fewer than ten venom-derived molecules on the market. Structural characterization and identification of post-translational modifications are essential to develop biological lead structures into pharmaceuticals. Utilizing advancements in mass spectrometry, we have created a high definition approach that fuses conventional high-resolution MS-MS with ion mobility spectrometry (HDMSE) to elucidate these primary structure characteristics. We investigated venom from ten species of “tiger” spider (Genus: Poecilotheria) and discovered they contain isobaric conformers originating from non-enzymatic Asp isomerization. One conformer pair conserved in five of ten species examined, denominated PcaTX-1a and PcaTX-1b, was found to be a 36-residue peptide with a cysteine knot, an amidated C-terminus, and isoAsp33Asp substitution. Although the isomerization of Asp has been implicated in many pathologies, this is the first characterization of Asp isomerization in a toxin and demonstrates the isomerized product’s diminished physiological effects. This study establishes the value of a HDMSE approach to toxin screening and characterization.


Proteomes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 14 ◽  
Author(s):  
Emmalyn J. Dupree ◽  
Madhuri Jayathirtha ◽  
Hannah Yorkey ◽  
Marius Mihasan ◽  
Brindusa Alina Petre ◽  
...  

Proteomics is the field of study that includes the analysis of proteins, from either a basic science prospective or a clinical one. Proteins can be investigated for their abundance, variety of proteoforms due to post-translational modifications (PTMs), and their stable or transient protein–protein interactions. This can be especially beneficial in the clinical setting when studying proteins involved in different diseases and conditions. Here, we aim to describe a bottom-up proteomics workflow from sample preparation to data analysis, including all of its benefits and pitfalls. We also describe potential improvements in this type of proteomics workflow for the future.


2019 ◽  
Vol 70 (13) ◽  
pp. 3401-3414 ◽  
Author(s):  
Clara Williams ◽  
Patricia Fernández-Calvo ◽  
Maite Colinas ◽  
Laurens Pauwels ◽  
Alain Goossens

Abstract Phytohormones regulate the plasticity of plant growth and development, and responses to biotic and abiotic stresses. Many hormone signal transduction cascades involve ubiquitination and subsequent degradation of proteins by the 26S proteasome. The conjugation of ubiquitin to a substrate is facilitated by the E1 activating, E2 conjugating, and the substrate-specifying E3 ligating enzymes. The most prevalent type of E3 ligase in plants is the Cullin–RING ligase (CRL)-type, with F-box proteins (FBPs) as the substrate recognition component. The activity of these SKP–Cullin–F-box (SCF) complexes needs to be tightly regulated in time and place. Here, we review the regulation of SCF function in plants on multiple levels, with a focus on the auxin and jasmonate SCF-type receptor complexes. We discuss in particular the relevance of protein–protein interactions and post-translational modifications as mechanisms to keep SCF functioning under control. Additionally, we highlight the unique property of SCFTIR1/AFB and SCFCOI1 to recognize substrates by forming co-receptor complexes. Finally, we explore how engineered selective agonists can be used to study and uncouple the outcomes of the complex auxin and jasmonate signaling networks that are governed by these FBPs.


2013 ◽  
Vol 538 (2) ◽  
pp. 64-70 ◽  
Author(s):  
Rita Nogueira-Ferreira ◽  
Rui Vitorino ◽  
Manuel J. Ferreira-Pinto ◽  
Rita Ferreira ◽  
Tiago Henriques-Coelho

Parasitology ◽  
2012 ◽  
Vol 139 (9) ◽  
pp. 1103-1118 ◽  
Author(s):  
J. M. WASTLING ◽  
S. D. ARMSTRONG ◽  
R. KRISHNA ◽  
D. XIA

SUMMARYSystems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types.


Sign in / Sign up

Export Citation Format

Share Document