scholarly journals Aptamers and Antisense Oligonucleotides for Diagnosis and Treatment of Hematological Diseases

2020 ◽  
Vol 21 (9) ◽  
pp. 3252 ◽  
Author(s):  
Valentina Giudice ◽  
Francesca Mensitieri ◽  
Viviana Izzo ◽  
Amelia Filippelli ◽  
Carmine Selleri

Aptamers or chemical antibodies are single-stranded DNA or RNA oligonucleotides that bind proteins and small molecules with high affinity and specificity by recognizing tertiary or quaternary structures as antibodies. Aptamers can be easily produced in vitro through a process known as systemic evolution of ligands by exponential enrichment (SELEX) or a cell-based SELEX procedure. Aptamers and modified aptamers, such as slow, off-rate, modified aptamers (SOMAmers), can bind to target molecules with less polar and more hydrophobic interactions showing slower dissociation rates, higher stability, and resistance to nuclease degradation. Aptamers and SOMAmers are largely employed for multiplex high-throughput proteomics analysis with high reproducibility and reliability, for tumor cell detection by flow cytometry or microscopy for research and clinical purposes. In addition, aptamers are increasingly used for novel drug delivery systems specifically targeting tumor cells, and as new anticancer molecules. In this review, we summarize current preclinical and clinical applications of aptamers in malignant and non-malignant hematological diseases.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 888
Author(s):  
Hiro Uemachi ◽  
Yuuya Kasahara ◽  
Keisuke Tanaka ◽  
Takumi Okuda ◽  
Yoshihiro Yoneda ◽  
...  

Nucleic acid aptamers have attracted considerable attention as next-generation pharmaceutical agents and delivery vehicles for small molecule drugs and therapeutic oligonucleotides. Chemical modification is an effective approach for improving the functionality of aptamers. However, the process of selecting appropriately modified aptamers is laborious because of many possible modification patterns. Here, we describe a hybrid-type systematic evolution of ligands by exponential enrichment (SELEX) approach for the generation of the artificial nucleic acid aptamers effective against human TROP2, a cell surface protein identified by drug discovery as a promising target for cancer therapy. Capillary electrophoresis SELEX was used for the pre-screening of multiple modified nucleic acid libraries and enrichment of TROP2 binding aptamers in the first step, followed by functional screening using cell-SELEX in the second step for the generation of cell-internalizing aptamers. One representative aptamer, Tac-B1, had a nanomolar-level affinity to human TROP2 and exhibited elevated capacity for internalization by cells. Because of the growing interest in the application of aptamers for drug delivery, our hybrid selection approach has great potential for the generation of functional artificial nucleic acid aptamers with ideal modification patterns in vitro.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


2019 ◽  
Author(s):  
Candace E. Benjamin ◽  
Zhuo Chen ◽  
Olivia Brohlin ◽  
Hamilton Lee ◽  
Stefanie Boyd ◽  
...  

<div><div><div><p>The emergence of viral nanotechnology over the preceding two decades has created a number of intellectually captivating possible translational applications; however, the in vitro fate of the viral nanoparticles in cells remains an open question. Herein, we investigate the stability and lifetime of virus-like particle (VLP) Qβ - a representative and popular VLP for several applications - following cellular uptake. By exploiting the available functional handles on the viral surface, we have orthogonally installed the known FRET pair, FITC and Rhodamine B, to gain insight of the particle’s behavior in vitro. Based on these data, we believe VLPs undergo aggregation in addition to the anticipated proteolysis within a few hours of cellular uptake.</p></div></div></div>


2020 ◽  
Author(s):  
Sean A. Newmister ◽  
Kinshuk Raj Srivastava ◽  
Rosa V. Espinoza ◽  
Kersti Caddell Haatveit ◽  
Yogan Khatri ◽  
...  

Biocatalysis offers an expanding and powerful strategy to construct and diversify complex molecules by C-H bond functionalization. Due to their high selectivity, enzymes have become an essential tool for C-H bond functionalization and offer complementary reactivity to small-molecule catalysts. Hemoproteins, particularly cytochromes P450, have proven effective for selective oxidation of unactivated C-H bonds. Previously, we reported the in vitro characterization of an oxidative tailoring cascade in which TamI, a multifunctional P450 functions co-dependently with the TamL flavoprotein to catalyze regio- and stereoselective hydroxylations and epoxidation to yield tirandamycin A and tirandamycin B. TamI follows a defined order including 1) C10 hydroxylation, 2) C11/C12 epoxidation, and 3) C18 hydroxylation. Here we present a structural, biochemical, and computational investigation of TamI to understand the molecular basis of its substrate binding, diverse reactivity, and specific reaction sequence. The crystal structure of TamI in complex with tirandamycin C together with molecular dynamics simulations and targeted mutagenesis suggest that hydrophobic interactions with the polyene chain of its natural substrate are critical for molecular recognition. QM/MM calculations and molecular dynamics simulations of TamI with variant substrates provided detailed information on the molecular basis of sequential reactivity, and pattern of regio- and stereo-selectivity in catalyzing the three-step oxidative cascade.<br>


2012 ◽  
Vol 51 (05) ◽  
pp. 179-185 ◽  
Author(s):  
M. Wendisch ◽  
D. Aurich ◽  
R. Runge ◽  
R. Freudenberg ◽  
J. Kotzerke ◽  
...  

SummaryTechnetium radiopharmaceuticals are well established in nuclear medicine. Besides its well-known gamma radiation, 99mTc emits an average of five Auger and internal conversion electrons per decay. The biological toxicity of these low-energy, high-LET (linear energy transfer) emissions is a controversial subject. One aim of this study was to estimate in a cell model how much 99mTc can be present in exposed cells and which radiobiological effects could be estimated in 99mTc-overloaded cells. Methods: Sodium iodine symporter (NIS)- positive thyroid cells were used. 99mTc-uptake studies were performed after preincubation with a non-radioactive (cold) stannous pyro - phosphate kit solution or as a standard 99mTc pyrophosphate kit preparation or with pure pertechnetate solution. Survival curves were analyzed from colony-forming assays. Results: Preincubation with stannous complexes causes irreversible intracellular radioactivity retention of 99mTc and is followed by further pertechnetate influx to an unexpectedly high 99mTc level. The uptake of 99mTc pertechnetate in NIS-positive cells can be modified using stannous pyrophosphate from 3–5% to >80%. The maximum possible cellular uptake of 99mTc was 90 Bq/cell. Compared with nearly pure extracellular irradiation from routine 99mTc complexes, cell survival was reduced by 3–4 orders of magnitude after preincubation with stannous pyrophosphate. Conclusions: Intra cellular 99mTc retention is related to reduced survival, which is most likely mediated by the emission of low-energy electrons. Our findings show that the described experiments constitute a simple and useful in vitro model for radiobiological investigations in a cell model.


2019 ◽  
Vol 35 (6) ◽  
pp. 91-101
Author(s):  
F.A. Klebanov ◽  
S.E. Cheperegin ◽  
D.G. Kozlov

Mutant variants of mini-intein PRP8 from Penicillium chrysogenum (Int4b) with improved control of C-terminal processing were characterized. The presented variants can serve as a basis for self-removed polypeptide tags capable of carrying an affine label and allowing to optimize the process of obtaining target proteins and peptides in E. coli cells. They allow to synthesize target molecules in the composition of soluble and insoluble hybrid proteins (fusions), provide their afnne purification, autocatalytic processing and obtaining mature target products. The presented variants have a number of features in comparison with the known prototypes. In particular the mutant mini-intein Int4bPRO, containing the L93P mutation, has temperature-dependent properties. At cultivation temperature below 30 °C it allows the production of target molecules as part of soluble fusions, but after increasing of cultivation temperature to 37 °C it directs the most of synthesized fusions into insoluble intracellular aggregates. The transition of Int4bPRO into insoluble form is accompanied by complete inactivation of C-terminal processing. Further application of standard protein denaturation-renaturation procedures enable efficiently reactivate Int4bPRO and to carry out processing of its fusions in vitro. Two other variants, Int4b56 and Int4b36, containing a point mutation T62N or combination of mutations D144N and L146T respectively, have a reduced rate of C-terminal processing. Their use in E. coli cells allows to optimize the biosynthesis of biologically active target proteins and peptides in the composition of soluble fusions, suitable for afnne purification and subsequent intein-dependent processing without the use of protein denaturation-renaturation procedures. intein, fusion, processing, processing rate, gelonin The work was supported within the framework of the State Assignment no. 595-00003-19 PR.


2019 ◽  
Vol 35 (6) ◽  
pp. 87-90
Author(s):  
S.V. Nikulin ◽  
V.A. Petrov ◽  
D.A. Sakharov

The real-time monitoring of electric capacitance (impedance spectroscopy) allowed obtaining evidence that structures which look like intestinal villi can be formed during the cultivation under static conditions as well as during the cultivation in microfluidic chips. It was shown in this work via transcriptome analysis that the Hh signaling pathway is involved in the formation of villus-like structures in vitro, which was previously shown for their formation in vivo. impedance spectroscopy, intestine, villi, electric capacitance, Hh The study was funded by the Russian Science Foundation (Project 16-19-10597).


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1906
Author(s):  
Mona Atabakhshi-Kashi ◽  
Mónica Carril ◽  
Hossein Mahdavi ◽  
Wolfgang J. Parak ◽  
Carolina Carrillo-Carrion ◽  
...  

Nanoparticles (NPs) functionalized with antibodies (Abs) on their surface are used in a wide range of bioapplications. Whereas the attachment of antibodies to single NPs to trigger the internalization in cells via receptor-mediated endocytosis has been widely studied, the conjugation of antibodies to larger NP assemblies has been much less explored. Taking into account that NP assemblies may be advantageous for some specific applications, the possibility of incorporating targeting ligands is quite important. Herein, we performed the effective conjugation of antibodies onto a fluorescent NP assembly, which consisted of fluorinated Quantum Dots (QD) self-assembled through fluorine–fluorine hydrophobic interactions. Cellular uptake studies by confocal microscopy and flow cytometry revealed that the NP assembly underwent the same uptake procedure as individual NPs; that is, the antibodies retained their targeting ability once attached to the nanoassembly, and the NP assembly preserved its intrinsic properties (i.e., fluorescence in the case of QD nanoassembly).


2021 ◽  
Vol 8 (1) ◽  
pp. e000830
Author(s):  
Souichi Yamada ◽  
Shuetsu Fukushi ◽  
Hitomi Kinoshita ◽  
Makoto Ohnishi ◽  
Tadaki Suzuki ◽  
...  

BackgroundAn outbreak of novel coronavirus (SARS-CoV-2)-associated respiratory infectious diseases (COVID-19) emerged in 2019 and has spread rapidly in humans around the world. The demonstration of in vitro infectiousness of respiratory specimens is an informative surrogate for SARS-CoV-2 transmission from patients with COVID-19; accordingly, viral isolation assays in cell culture are an important aspect of laboratory diagnostics for COVID-19.MethodsWe developed a simple and rapid protocol for isolating SARS-CoV-2 from respiratory specimens using VeroE6/TMPRSS2 cells, a cell line that is highly susceptible to the virus. We also investigated a correlation between isolation of SARS-CoV-2 and viral load detected by real-time RT-PCR (rRT-PCR) using N2 primer/probe set that has been developed for testing of COVID-19 in Japan.ResultsThe SARS-CoV-2 isolation protocol did not require blind passage of inoculated cells and yielded the results of viral isolation within 7 days after inoculation. Specimens with cycle threshold (Ct) values of <20.2, determined by rRT-PCR, were predicted to be isolation-positive. On the other hand, 6.9% of specimens with Ct values >35 were virus isolation-positive, indicating that low viral loads (high Ct values) in upper respiratory specimens do not always indicate no risk of containing transmissible virus.ConclusionIn combination with rRT-PCR, the SARS-CoV-2 isolation protocol provides a means for assessing the potential risk of transmissible virus in upper respiratory specimens.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1465-1475 ◽  
Author(s):  
T Kozlova ◽  
G V Pokholkova ◽  
G Tzertzinis ◽  
J D Sutherland ◽  
I F Zhimulev ◽  
...  

Abstract DHR38 is a member of the steroid receptor superfamily in Drosophila homologous to the vertebrate NGFI-B-type orphan receptors. In addition to binding to specific response elements as a monomer, DHR38 interacts with the USP component of the ecdysone receptor complex in vitro, in yeast and in a cell line, suggesting that DHR38 might modulate ecdysone-triggered signals in the fly. We characterized the molecular structure and expression of the Dhr38 gene and initiated an in vivo analysis of its function(s) in development. The Dhr38 transcription unit spans more than 40 kb in length, includes four introns, and produces at least four mRNA isoforms differentially expressed in development; two of these are greatly enriched in the pupal stage and encode nested polypeptides. We characterized four alleles of Dhr38: a P-element enchancer trap line, l(2)02306, which shows exclusively epidermal staining in the late larval, pre-pupal and pupal stages, and three EMS-induced alleles. Dhr38 alleles cause localized fragility and rupturing of the adult cuticle, demonstrating that Dhr38 plays an important role in late stages of epidermal metamorphosis.


Sign in / Sign up

Export Citation Format

Share Document