scholarly journals Circulating Cell-Free Nucleic Acids: Main Characteristics and Clinical Application

2020 ◽  
Vol 21 (18) ◽  
pp. 6827 ◽  
Author(s):  
Melinda Szilágyi ◽  
Ondrej Pös ◽  
Éva Márton ◽  
Gergely Buglyó ◽  
Beáta Soltész ◽  
...  

Liquid biopsy recently became a very promising diagnostic method that has several advantages over conventional invasive methods. Liquid biopsy may serve as a source of several important biomarkers including cell-free nucleic acids (cf-NAs). Cf-DNA is widely used in prenatal testing in order to characterize fetal genetic disorders. Analysis of cf-DNA may provide information about the mutation profile of tumor cells, while cell-free non-coding RNAs are promising biomarker candidates in the diagnosis and prognosis of cancer. Many of these markers have the potential to help clinicians in therapy selection and in the follow-up of patients. Thus, cf-NA-based diagnostics represent a new path in personalized medicine. Although several reviews are available in the field, most of them focus on a limited number of cf-NA types. In this review, we give an overview about all known cf-NAs including cf-DNA, cf-mtDNA and cell-free non-coding RNA (miRNA, lncRNA, circRNA, piRNA, YRNA, and vtRNA) by discussing their biogenesis, biological function and potential as biomarker candidates in liquid biopsy. We also outline possible future directions in the field.

2020 ◽  
Vol 21 (18) ◽  
pp. 6930
Author(s):  
Virginia Veronica Visconti ◽  
Simona Fittipaldi ◽  
Simone Ciuffi ◽  
Francesca Marini ◽  
Giancarlo Isaia ◽  
...  

Osteoporosis (OP) is a multifactorial disorder in which environmental factors along with genetic variants and epigenetic mechanisms have been implicated. Long non-coding RNAs (lncRNAs) have recently emerged as important regulators of bone metabolism and OP aetiology. In this study, we analyzed the expression level and the genetic association of lncRNA GAS5 in OP patients compared to controls. Quantitative RT-PCR analysis of GAS5 was performed on the serum of 56 OP patients and 28 healthy individuals. OP subjects were divided into three groups of analysis: 29 with fragility fractures of lumbar spine (OP_VF), 14 with fragility fractures of femoral neck (OP_FF) and 13 without fractures (OP_WF). Genotyping of the rs145204276 insertion/deletion polymorphism has also been performed by Restriction fragment length polymorphism (RFLP) and direct sequencing analyses. Expression of circulating GAS5 is significantly increased in OP patients compared to controls (p < 0.01), with a statistically higher significance in fractured OP individuals vs. healthy subjects (p < 0.001). No statistically significant change was found in female OP patients; conversely, GAS5 is upregulated in the subgroup of fractured OP women sera (p < 0.01) and in all OP males (p < 0.05). Furthermore, a direct correlation between GAS5 expression level and parathyroid hormone (PTH) concentration was found in OP patients (r = 0.2930; p = 0.0389). Genetic analysis of rs145204276 revealed that the deletion allele was correlated with a higher expression of GAS5 in OP patients (0.22 ± 0.02 vs. 0.15 ± 0.01, ** p < 0.01). Our results suggest circulating GAS5 as a putative biomarker for the diagnosis and prognosis of OP and OP-related fractures.


2021 ◽  
Vol 22 (5) ◽  
pp. 2654
Author(s):  
João Lobo ◽  
Ricardo Leão ◽  
Carmen Jerónimo ◽  
Rui Henrique

Liquid biopsies constitute a minimally invasive means of managing cancer patients, entailing early diagnosis, follow-up and prediction of response to therapy. Their use in the germ cell tumor field is invaluable since diagnostic tissue biopsies (which are invasive) are often not performed, and therefore only a presumptive diagnosis can be made, confirmed upon examination of the surgical specimen. Herein, we provide an overall review of the current liquid biopsy-based biomarkers of this disease, including the classical, routinely used serum tumor markers—the promising microRNAs rapidly approaching the introduction into clinical practice—but also cell-free DNA markers (including DNA methylation) and circulating tumor cells. Finally, and importantly, we also explore novel strategies and challenges for liquid biopsy markers and methodologies, providing a critical view of the future directions for liquid biopsy tests in this field, highlighting gaps and unanswered questions.


Author(s):  
Ellena Cotton ◽  
David Ray

Summary A young woman carrying germline DICER1 mutation was discovered to have a pituitary microprolactinoma when she became amenorrhoic. The mutation was identified as a result of family screening following the early death of the patient’s daughter with ovarian cancer. The patient was in follow-up screening for thyroid disease, and investigations were initiated when she became amenorrhoic. MR scan revealed a 6 mm diameter pituitary microadenoma and raised prolactin. The prolactin was efficiently suppressed with low-dose cabergoline, and her menstrual cycles resumed. Dicer is an RNase enzyme, which is essential for processing small non-coding RNAs. These molecules play pleiotropic roles in regulating gene expression, by targeting mRNA sequences for degradation. DICER1 plays different roles depending on cell context, but is thought to be a functional tumour suppressor gene. Accordingly, germline mutation in one DICER1 allele is insufficient for oncogenesis, and a second hit on the other allele is required, as a result of postnatal somatic mutation. Loss of DICER1 is linked to multiple tumours, with prominent endocrine representation. Multinodular goitre is frequent, with increased risk of differentiated thyroid cancer. Rare, developmental pituitary tumours are reported, including pituitary blastoma, but not reports of functional pituitary adenomas. As DICER1 mutations are rare, case reports are the only means to identify new manifestations and to inform appropriate screening protocols. Learning points: DICER1 mutations lead to endocrine tumours. DICER1 is required for small non-coding RNA expression. DICER1 carriage and microprolactinoma are both rare, but here are reported in the same individual, suggesting association. Endocrine follow-up of patients carrying DICER1 mutations should consider pituitary disease.


2020 ◽  
Vol 13 ◽  
pp. 251686572090405 ◽  
Author(s):  
Seyed Mohammad Kazem Aghamir ◽  
Ramin Heshmat ◽  
Mehdi Ebrahimi ◽  
Fatemeh Khatami

Blood test is a kind of liquid biopsy that checks cancer cells or cancer nucleic acids circulating freely from cells in the blood. A liquid biopsy may be used to distinguish cancer at early stages and it could be a game-changer for both cancer diagnosis and prognosis strategies. Liquid biopsy tests consider several tumor components, such as DNA, RNA, proteins, and the tiny vesicles originating from tumor cells. Actually, liquid biopsy signifies the genetic alterations of tumors through nucleic acids or cells in various body fluids, including blood, urine, cerebrospinal fluid, or saliva in a noninvasive manner. In this review, we present an overall description of liquid biopsy in which circulating tumor cells, cell-free nucleic acids, exosomes, and extrachromosomal circular DNA are included.


2020 ◽  
Vol 21 (20) ◽  
pp. 7522
Author(s):  
Zsuzsanna Birkó ◽  
Bálint Nagy ◽  
Álmos Klekner ◽  
József Virga

Glioblastoma is a primary Central Nervous System (CNS) malignancy with poor survival. Treatment options are scarce and despite the extremely heterogeneous nature of the disease, clinicians lack prognostic and predictive markers to characterize patients with different outcomes. Certain immunohistochemistry, FISH, or PCR-based molecular markers, including isocitrate dehydrogenase1/2 (IDH1/2) mutations, epidermal growth factor receptor variant III (EGFRvIII) mutation, vascular endothelial growth factor overexpression (VEGF) overexpression, or (O6-Methylguanine-DNA methyltransferase promoter) MGMT promoter methylation status, are well-described; however, their clinical usefulness and accuracy is limited, and tumor tissue samples are always necessary. Liquid biopsy is a developing field of diagnostics and patient follow up in multiple types of cancer. Fragments of circulating nucleic acids are collected in various forms from different bodily fluids, including serum, urine, or cerebrospinal fluid in order to measure the quality and quantity of these markers. Multiple types of nucleic acids can be analyzed using liquid biopsy. Circulating cell-free DNA, mitochondrial DNA, or the more stable long and small non-coding RNAs, circular RNAs, or microRNAs can be identified and measured by novel PCR and next-generation sequencing-based methods. These markers can be used to detect the previously described alterations in a minimally invasive method. These markers can be used to differentiate patients with poor or better prognosis, or to identify patients who do not respond to therapy. Liquid biopsy can be used to detect recurrent disease, often earlier than using imaging modalities. Liquid biopsy is a rapidly developing field, and similarly to other types of cancer, measuring circulating tumor-derived nucleic acids from biological fluid samples could be the future of differential diagnostics, patient stratification, and follow up in the future in glioblastoma as well.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Linlin Fang ◽  
Yanni Gao ◽  
Xing Liu ◽  
Juan Bai ◽  
Ping Jiang ◽  
...  

AbstractLong non-coding RNAs (lncRNAs) are a new arm of gene regulatory mechanism as discovered by sequencing techniques and follow-up functional studies. The lncRNAs regulation of pseudorabies virus (PRV) infection has rarely been reported so far. Using RNA sequencing analysis, 225 lncRNAs with significant altered expressions in 3D4/21 cells infected with PRV (ZJ01) were identified. Five lncRNAs upregulated in PRV-infected cells were verified in cells infected with different PRV strains by qRT-PCR. By down- and up-regulation of lnc641, the accelerating effect of lnc641 on PRV replication was confirmed. Furthermore, we found that lnc641 regulated PRV replication by inhibiting the JAK-STAT1 pathway. This study suggests that lnc641 could be a new host factor target for developing antiviral therapies against PRV infection.


2012 ◽  
Vol 153 (52) ◽  
pp. 2051-2059 ◽  
Author(s):  
Zsuzsanna Gaál ◽  
Éva Oláh

MicroRNAs are a class of small non-coding RNAs regulating gene expression at posttranscriptional level. Their target genes include numerous regulators of cell cycle, cell proliferation as well as apoptosis. Therefore, they are implicated in the initiation and progression of cancer, tissue invasion and metastasis formation as well. MicroRNA profiles supply much information about both the origin and the differentiation state of tumours. MicroRNAs also have a key role during haemopoiesis. An altered expression level of those have often been observed in different types of leukemia. There are successful attempts to apply microRNAs in the diagnosis and prognosis of acute lymphoblastic leukemia and acute myeloid leukemia. Measurement of the expression levels may help to predict the success of treatment with different kinds of chemotherapeutic drugs. MicroRNAs are also regarded as promising therapeutic targets, and can contribute to a more personalized therapeutic approach in haemato-oncologic patients. Orv. Hetil., 2012, 153, 2051–2059.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 628
Author(s):  
Dagmara Baraniak ◽  
Jerzy Boryski

This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.


Sign in / Sign up

Export Citation Format

Share Document