scholarly journals Regulation of Secondary Metabolism in the Penicillium Genus

2020 ◽  
Vol 21 (24) ◽  
pp. 9462
Author(s):  
Christelle El Hajj Assaf ◽  
Chrystian Zetina-Serrano ◽  
Nadia Tahtah ◽  
André El Khoury ◽  
Ali Atoui ◽  
...  

Penicillium, one of the most common fungi occurring in a diverse range of habitats, has a worldwide distribution and a large economic impact on human health. Hundreds of the species belonging to this genus cause disastrous decay in food crops and are able to produce a varied range of secondary metabolites, from which we can distinguish harmful mycotoxins. Some Penicillium species are considered to be important producers of patulin and ochratoxin A, two well-known mycotoxins. The production of these mycotoxins and other secondary metabolites is controlled and regulated by different mechanisms. The aim of this review is to highlight the different levels of regulation of secondary metabolites in the Penicillium genus.

2015 ◽  
Vol 28 (3) ◽  
pp. 232-248 ◽  
Author(s):  
Ana-Rosa Ballester ◽  
Marina Marcet-Houben ◽  
Elena Levin ◽  
Noa Sela ◽  
Cristina Selma-Lázaro ◽  
...  

The relationship between secondary metabolism and infection in pathogenic fungi has remained largely elusive. The genus Penicillium comprises a group of plant pathogens with varying host specificities and with the ability to produce a wide array of secondary metabolites. The genomes of three Penicillium expansum strains, the main postharvest pathogen of pome fruit, and one Pencillium italicum strain, a postharvest pathogen of citrus fruit, were sequenced and compared with 24 other fungal species. A genomic analysis of gene clusters responsible for the production of secondary metabolites was performed. Putative virulence factors in P. expansum were identified by means of a transcriptomic analysis of apple fruits during the course of infection. Despite a major genome contraction, P. expansum is the Penicillium species with the largest potential for the production of secondary metabolites. Results using knockout mutants clearly demonstrated that neither patulin nor citrinin are required by P. expansum to successfully infect apples. Li et al. ( MPMI-12-14-0398-FI ) reported similar results and conclusions in MPMI's June 2015 issue.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 323
Author(s):  
Md. Shofiul Azam ◽  
Shafi Ahmed ◽  
Md. Nahidul Islam ◽  
Pulak Maitra ◽  
Md. Mahmudul Islam ◽  
...  

Mycotoxins are secondary metabolites of filamentous fungi that contaminate food products such as fruits, vegetables, cereals, beverages, and other agricultural commodities. Their occurrence in the food chain, especially in beverages, can pose a serious risk to human health, due to their toxicity, even at low concentrations. Mycotoxins, such as aflatoxins (AFs), ochratoxin A (OTA), patulin (PAT), fumonisins (FBs), trichothecenes (TCs), zearalenone (ZEN), and the alternaria toxins including alternariol, altenuene, and alternariol methyl ether have largely been identified in fruits and their derived products, such as beverages and drinks. The presence of mycotoxins in beverages is of high concern in some cases due to their levels being higher than the limits set by regulations. This review aims to summarize the toxicity of the major mycotoxins that occur in beverages, the methods available for their detection and quantification, and the strategies for their control. In addition, some novel techniques for controlling mycotoxins in the postharvest stage are highlighted.


2008 ◽  
Vol 71 (7) ◽  
pp. 1422-1426 ◽  
Author(s):  
S. AMÉZQUETA ◽  
E. GONZÁLEZ-PEÑAS ◽  
T. LIZARRAGA ◽  
M. MURILLO-ARBIZU ◽  
A. LÓPEZ de CERAIN

Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium species, which contaminates cocoa among other food commodities. It has been previously demonstrated that the toxin is concentrated in cocoa shells. The aim of this study was to assay a simple chemical method for ochratoxin A reduction from naturally contaminated cocoa shells. In order to determine the efficiency of the method, a high-performance liquid chromatography method with fluorescence detection was set up beforehand and validated. Ochratoxin A was extracted from cocoa shells with methanol–3% sodium bicarbonate solution and then purified with immunoaffinity columns. The recovery attained was 88.7% (relative standard deviation = 6.36%) and the limits of detection and quantification were 0.06 and 0.2 μg/kg, respectively. For decontamination experiments, the solvent extractor ASE 200 was used. First, aqueous solutions of 2% sodium bicarbonate and potassium carbonate were compared under the same conditions (1,500 lb/in2 at 40°C for 10 min). Higher ochratoxin A reduction was obtained with potassium carbonate (83 versus 27%). Then, this salt was used under different conditions of pressure, temperature, and time. The greatest ochratoxin A reduction was achieved with an aqueous potassium carbonate solution (2%), at 1,000 lb/in2 at 90°C for 10 min. This method could probably be applicable to the cocoa industry because it is fast and relatively economic. From the point of view of human health, the use of potassium carbonate, partially eliminated by rinsing the sample with water, does not likely represent a risk for human health.


2020 ◽  
Vol 11 (10) ◽  
pp. 8547-8559
Author(s):  
Hongjing Zhao ◽  
Yu Wang ◽  
Mengyao Mu ◽  
Menghao Guo ◽  
Hongxian Yu ◽  
...  

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3061
Author(s):  
Bianca Ivănescu ◽  
Ana Flavia Burlec ◽  
Florina Crivoi ◽  
Crăița Roșu ◽  
Andreia Corciovă

The Artemisia genus includes a large number of species with worldwide distribution and diverse chemical composition. The secondary metabolites of Artemisia species have numerous applications in the health, cosmetics, and food sectors. Moreover, many compounds of this genus are known for their antimicrobial, insecticidal, parasiticidal, and phytotoxic properties, which recommend them as possible biological control agents against plant pests. This paper aims to evaluate the latest available information related to the pesticidal properties of Artemisia compounds and extracts and their potential use in crop protection. Another aspect discussed in this review is the use of nanotechnology as a valuable trend for obtaining pesticides. Nanoparticles, nanoemulsions, and nanocapsules represent a more efficient method of biopesticide delivery with increased stability and potency, reduced toxicity, and extended duration of action. Given the negative impact of synthetic pesticides on human health and on the environment, Artemisia-derived biopesticides and their nanoformulations emerge as promising ecofriendly alternatives to pest management.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3227
Author(s):  
Yuanwei Liu ◽  
Kishneth Palaniveloo ◽  
Siti Aisyah Alias ◽  
Jaya Seelan Sathiya Seelan

Soft corals are widely distributed across the globe, especially in the Indo-Pacific region, with Sarcophyton being one of the most abundant genera. To date, there have been 50 species of identified Sarcophyton. These soft corals host a diverse range of marine fungi, which produce chemically diverse, bioactive secondary metabolites as part of their symbiotic nature with the soft coral hosts. The most prolific groups of compounds are terpenoids and indole alkaloids. Annually, there are more bio-active compounds being isolated and characterised. Thus, the importance of the metabolite compilation is very much important for future reference. This paper compiles the diversity of Sarcophyton species and metabolites produced by their associated marine fungi, as well as the bioactivity of these identified compounds. A total of 88 metabolites of structural diversity are highlighted, indicating the huge potential these symbiotic relationships hold for future research.


2021 ◽  
Vol 80 (11) ◽  
Author(s):  
Salwinder Singh Dhaliwal ◽  
Raj Setia ◽  
Vinod Kumar ◽  
Tapan Ghosh ◽  
Sagar Taneja ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4504
Author(s):  
Muhanna Al-shaibani ◽  
Radin Maya Saphira Radin Mohamed ◽  
Nik Sidik ◽  
Hesham Enshasy ◽  
Adel Al-Gheethi ◽  
...  

The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities’ well-being.


2016 ◽  
Vol 2 (1) ◽  
Author(s):  
V. Koteswara Rao ◽  
B. Aruna ◽  
Md. Rafiyuddin ◽  
K. Narasimha Rao ◽  
S. Girisham ◽  
...  

2020 ◽  
Vol 41 (2) ◽  
pp. 309-324
Author(s):  
Meghdad Jourgholami ◽  
Masoumeh Ahmadi ◽  
Farzam Tavankar ◽  
Rodolfo Picchio

Ground-based skidding operations can lead to soil compaction and displacement, which could cause negative effects on forest soil. Hence, some efforts such as forestry best management practices (BMPs) must be implemented in the prone area to mitigate these possible impacts. Several materials and treatments have been adopted to suppress these adverse effects by increasing the ground cover. However, the effects of mulch treatments on runoff and sediment yield are inconclusive with a diverse range of effectiveness. For these reasons, in this research mulch treatments were tested as to determine how the application of organic mulch amendments such as straw and leaf litter and contour-felled logs would alleviate the runoff and sediment yield on machine operating trails and ensure successful hillslope stabilization. The aims of the study were to analyse and compare the effectiveness of leaf litter (LM) and straw mulch (SM) rate and different distances of contour-felled logs (CFL) to mitigate the runoff and sediment yield, and examine the impact of rainfall intensity on effectiveness of litter mulch, straw mulch, and contour-felled logs. Totally, 30 bounded runoff plots in the machine operating trails and four treatments including litter mulch (LMR1: 0.62, LMR2: 1.24, and LMR3: 1.86 kg m-2), straw mulch (SMR1: 0.45, SMR2: 0.92, and SMR3: 1.34 kg m-2), contour-felled logs (CFL10: 10, CFL20: 20, and CFL30: 30 m), and untreated area were established in triplicate with 4 m width and 100 m length. During the study period, the runoff and sediment yield in the untreated trails (U) were 2.36 mm and 11.84 g m-2. Straw (from 41.5 to 60.6%) and litter mulch (from 38.1 to 55.1%), and contour-felled logs treatments (from 70.8 to 88.1%) significantly decreased the runoff, compared to U treatment. Results show that mulch treatments with three different levels of Litter Mulch Rate, LMR1, LMR2, and LMR3 decreased mean sediment by 46.6, 64.0 and 71.8%, in the treatments with three different levels of Straw Mulch Rate, SMR1, SMR2, and SMR3 decreased mean sediment by 42.9, 62.1, and 69.9%, and in the treatments with three different distances of Contour-Felled Logs, CFL10, CFL20, and CFL30 decreased mean sediment by 90.6, 94.7 and 88.3% comparing to U, respectively. The relationships of the runoff and sediment responses to increasing mulching rate of litter and straw followed as negative logarithmic curves, but the decreasing-increasing trends were observed in runoff and sediment yield as the distance between contour-felled logs increased from 10 to 30 m. Polynomial regression equations were developed for predicting the runoff and sediment yield as a function of the application rate of litter and straw mulch and the distance between contour-felled logs, and rainfall intensity. We concluded that contour-felled logs treatment was more effective than both litter and straw mulch to mitigate the runoff, runoff coefficient, and sediment yield on machine operating trails. As a management measure, it could be possible to propose that the contour-felled logs with a distance of 20 m be prescribed to protect the machine operating trails from the negative effects of surface waterflow.


Sign in / Sign up

Export Citation Format

Share Document