scholarly journals Oxidative Stress, Plant Natural Antioxidants, and Obesity

2021 ◽  
Vol 22 (4) ◽  
pp. 1786
Author(s):  
Israel Pérez-Torres ◽  
Vicente Castrejón-Téllez ◽  
María Elena Soto ◽  
María Esther Rubio-Ruiz ◽  
Linaloe Manzano-Pech ◽  
...  

Oxidative stress is important in the pathophysiology of obesity, altering regulatory factors of mitochondrial activity, modifying the concentration of inflammation mediators associated with a large number and size of adipocytes, promoting lipogenesis, stimulating differentiation of preadipocytes to mature adipocytes, and regulating the energy balance in hypothalamic neurons that control appetite. This review discusses the participation of oxidative stress in obesity and the important groups of compounds found in plants with antioxidant properties, which include (a) polyphenols such as phenolic acids, stilbenes, flavonoids (flavonols, flavanols, anthocyanins, flavanones, flavones, flavanonols, and isoflavones), and curcuminoids (b) carotenoids, (c) capsaicinoids and casinoids, (d) isothiocyanates, (e) catechins, and (f) vitamins. Examples are analyzed, such as resveratrol, quercetin, curcumin, ferulic acid, phloretin, green tea, Hibiscus Sabdariffa, and garlic. The antioxidant activities of these compounds depend on their activities as reactive oxygen species (ROS) scavengers and on their capacity to prevent the activation of NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells), and reduce the expression of target genes, including those participating in inflammation. We conclude that natural compounds have therapeutic potential for diseases mediated by oxidative stress, particularly obesity. Controlled and well-designed clinical trials are still necessary to better know the effects of these compounds.

2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk

AbstractOxidative stress, associated with an imbalance between the oxidants (reactive oxygen species) and the antioxidants in the body, contributes to the development of many diseases. The body’s fight against reactive oxygen species is supported by antioxidants. Nowadays, there are too many analytical methods, but there is no one universal technique for assessing antioxidant properties. Moreover, the applied different ways of expressing the results lead to their incompatibility and unreasonable interpretation. The paper is a literature review concerning the most frequent ways of antioxidant activities expression and for an easy and universal method of the obtained results discussion. This paper is an attempt to point out their disadvantages and advantages. The manuscript can support the searching interpretation of the obtained results which will be a good tool for the development of a number of fields, especially medicine what can help in the future detection and treatment of many serious diseases. Graphic abstract


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Beatrice Muthoni Guchu ◽  
Alex King’ori Machocho ◽  
Stephen Kiruthi Mwihia ◽  
Mathew Piero Ngugi

Oxidative stress is the result of the disparity between pro-oxidants and antioxidants in an organism, and it is important in the pathogenesis of several degenerative disorders, such as arthritis, Alzheimer’s, cancer, and cardiovascular diseases. Free radicals can damage biomolecules, such as nucleic acids, lipids, proteins, polyunsaturated fatty acids, and carbohydrates, and the DNA leading to mutations. The use of antioxidants is effective in delaying the oxidation of biomolecules. Antioxidants are complexes found in the food that can retard or deter oxidation by preventing the initiation and propagation of oxidizing chain reactions. Medicinal plants have been used for centuries by man to manage diseases and have a host of antioxidant complexes. Traditionally, Caesalpinia volkensii, Vernonia lasiopus, and Acacia hockii have folkloric remedies against associated oxidative stress-mediated complications. However, the upsurge in its use has not been accompanied by scientific validations to support these claims. In this study, in vitro antioxidant activity of Caesalpinia volkensii, Vernonia lasiopus, and Acacia hockii collected from Embu County (Kenya) were determined by radical scavenging activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical in addition to ferric reducing antioxidant power analyzed against that of L-ascorbic acid as the standard. The obtained results revealed remarkable antioxidant activities of the studied plant extracts as evidenced by the low IC50 and EC50 values. These antioxidant activities could be due to the presence of antioxidants phytochemicals such as flavonoids, phenols, terpenoids, and saponins among others. Therefore, the therapeutic potential of this plant could be due to their antioxidant properties. This study recommends bioassay of the extracts against oxidative stress-related disorders for development of phytomedicine with antioxidant properties.


Author(s):  
Atefeh Jalali ◽  
Mohammadreza Kiafar ◽  
Masih Seddigh ◽  
Mohammad M. Zarshenas

Background: The consumption of natural antioxidants is increasing due to the demand and tendency to natural foods. Punica granatum L. [Punicaceae] is a fruit with various bioactive ingredients. The effectiveness of this plant has been proved against various disorders such as hyperglycemia, hyperlipidemia, blood coagulation, infections, cancer, and dentistry. Among them, there are numerous researches on antimicrobial and antioxidant properties. Subsequently, the present study aimed to compile a review of those properties to outline this herb as a possible natural antioxidant and preservative. Methods: Synchronically, keywords "Punica granatum" with antimicrobial, or antibacterial, antifungal, antiviral, antioxidant and radical scavenging were searched through "Scopus" database up to 31st September 2019. Papers focusing on agriculture, genetics, chemistry, and environmental sciences were excluded and also related papers were collected. Results: Among 201 papers focusing on related activities, 111 papers have dealt with antioxidant activities focusing based on DPPH assay, 59 with antibacterial, on both gram+ and gram- bacteria, 24 with antifungal effects, mostly on Aspergillus niger and Candida albicans, and 7 papers with antiviral activities. There were about 50 papers focusing on in-vivo antioxidant activities of this plant. Conclusion: Taken together, botanical parts of P. granatum have possessed notable radical scavenging and antimicrobial activities that with these properties, this plant can be introduced as a natural safe source of preservative and antioxidant. Accordingly, P. granatum can be applied as excipient with the aforementioned properties in the pharmaceutical and food industries.


2020 ◽  
Vol 18 (10) ◽  
pp. 779-790 ◽  
Author(s):  
Alexandre LeBlanc ◽  
Miroslava Cuperlovic-Culf ◽  
Pier Jr. Morin ◽  
Mohamed Touaibia

Background:: The current therapeutic options available to patients diagnosed with Amyotrophic Lateral Sclerosis (ALS) are limited and edaravone is a compound that has gained significant interest for its therapeutic potential in this condition. Objectives: : The current work was thus undertaken to synthesize and characterize a series of edaravone analogues. Methods: A total of 17 analogues were synthesized and characterized for their antioxidant properties, radical scavenging potential and copper-chelating capabilities. Results: Radical scavenging and copper-chelating properties were notably observed for edaravone. Analogues bearing hydrogen in position 1 and a phenyl at position 3 and a phenyl in both positions of pyrazol-5 (4H)-one displayed substantial radical scavenging, antioxidants and copper-chelating properties. High accessibility of electronegative groups combined with higher electronegativity and partial charge of the carbonyl moiety in edaravone might explain the observed difference in the activity of edaravone relative to the closely related analogues 6 and 7 bearing hydrogen at position 1 and a phenyl at position 3 (6) and a phenyl in both positions (7). Conclusion: Overall, this study reveals a subset of edaravone analogues with interesting properties. Further investigation of these compounds is foreseen in relevant models of oxidative stress-associated diseases in order to assess their therapeutic potential in such conditions.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 287
Author(s):  
Yew Rong Kong ◽  
Yong Xin Jong ◽  
Manisha Balakrishnan ◽  
Zhui Ken Bok ◽  
Janice Kwan Kah Weng ◽  
...  

Oxidative stress is a result of disruption in the balance between antioxidants and pro-oxidants in which subsequently impacting on redox signaling, causing cell and tissue damages. It leads to a range of medical conditions including inflammation, skin aging, impaired wound healing, chronic diseases and cancers but these conditions can be managed properly with the aid of antioxidants. This review features various studies to provide an overview on how Carica papaya help counteract oxidative stress via various mechanisms of action closely related to its antioxidant properties and eventually improving the management of various oxidative stress-related health conditions. Carica papaya is a topical plant species discovered to contain high amounts of natural antioxidants that can usually be found in their leaves, fruits and seeds. It contains various chemical compounds demonstrate significant antioxidant properties including caffeic acid, myricetin, rutin, quercetin, α-tocopherol, papain, benzyl isothiocyanate (BiTC), and kaempferol. Therefore, it can counteract pro-oxidants via a number of signaling pathways that either promote the expression of antioxidant enzymes or reduce ROS production. These signaling pathways activate the antioxidant defense mechanisms that protect the body against both intrinsic and extrinsic oxidative stress. To conclude, Carica papaya can be incorporated into medications or supplements to help manage the health conditions driven by oxidative stress and further studies are needed to investigate the potential of its chemical components to manage various chronic diseases.


2018 ◽  
Vol 19 (12) ◽  
pp. 4078 ◽  
Author(s):  
Dahn Clemens ◽  
Michael Duryee ◽  
Cleofes Sarmiento ◽  
Andrew Chiou ◽  
Jacob McGowan ◽  
...  

Doxycycline (DOX), a derivative of tetracycline, is a broad-spectrum antibiotic that exhibits a number of therapeutic activities in addition to its antibacterial properties. For example, DOX has been used in the management of a number of diseases characterized by chronic inflammation. One potential mechanism by which DOX inhibits the progression of these diseases is by reducing oxidative stress, thereby inhibiting subsequent lipid peroxidation and inflammatory responses. Herein, we tested the hypothesis that DOX directly scavenges reactive oxygen species (ROS) and inhibits the formation of redox-mediated malondialdehyde-acetaldehyde (MAA) protein adducts. Using a cell-free system, we demonstrated that DOX scavenged reactive oxygen species (ROS) produced during the formation of MAA-adducts and inhibits the formation of MAA-protein adducts. To determine whether DOX scavenges specific ROS, we examined the ability of DOX to directly scavenge superoxide and hydrogen peroxide. Using electron paramagnetic resonance (EPR) spectroscopy, we found that DOX directly scavenged superoxide, but not hydrogen peroxide. Additionally, we found that DOX inhibits MAA-induced activation of Nrf2, a redox-sensitive transcription factor. Together, these findings demonstrate the under-recognized direct antioxidant property of DOX that may help to explain its therapeutic potential in the treatment of conditions characterized by chronic inflammation and increased oxidative stress.


2018 ◽  
Vol 19 (12) ◽  
pp. 4027 ◽  
Author(s):  
Na Xu ◽  
Yi Lu ◽  
Jumin Hou ◽  
Chao Liu ◽  
Yonghai Sun

Morchella conica Pers. (M. conica) has been used both as a medical and edible mushroom and possesses antimicrobial properties and antioxidant activities. However, the antioxidant properties of polysaccharides purified from M. conica have not been studied. The aim of this study was to investigate the in vitro antioxidant properties of a polysaccharide NMCP-2 (neutral M. conica polysaccharides-2) purified from M. conica, as determined by radical scavenging assay and H2O2-induced oxidative stress in HEK 293T cells. Results showed that NMCP-2 with an average molecular weight of 48.3 kDa possessed a much stronger chelating ability on ferrous ions and a higher ability to scavenge radical scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) than the other purified fraction of NMCP-1 from M. conica. Moreover, 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetra-zolium bromide (MTT) assay showed that NMCP-2 dose-dependently preserved cell viability of H2O2-induced cells. The NMCP-2 pretreated group reduced the generation of reactive oxygen species (ROS) content and increased the mitochondria membrane potential (MMP) levels. In addition, Hoechst 33342 staining revealed cells treated with NMCP-2 declined nuclear condensation. Ultrastructural observation revealed that NMCP-2 pretreatment alleviated the ruptured mitochondria when exposed to H2O2. Furthermore, western blot analysis showed that NMCP-2 prevented significant downregulation of the protein expression of Bax, cleaved caspases 3, and upregulated Bcl-2 levels. These results suggest the protective effects of NMCP-2 against H2O2-induced injury in HEK 293T cells. NMCP-2 could be used as a natural antioxidant of functional foods and natural drugs.


Author(s):  
Sidra Munir

When the antioxidants in our immune system cannot neutralize or convert Reactive oxygen species into safe molecules at the rate at which it is produced then this imbalance is termed as “oxidative stress”. It is related with a wide array of diseases that includes cancer, diabetes, cardiovascular diseases, hypertension etc. These ROS species however are utmost essential for the proper functioning of human body which are produced as a consequence of partial oxidation of cellular metabolism performing essential functions such as protein phosphorylation, activation of several transcriptional factors, apoptosis, immunity, and differentiation. The sources by which these are produced can be broadly classified are intrinsic and extrinsic sources. There are variety of natural antioxidant enzymes of human body that combat against this oxidative stress. The extrinsic sources of ROS include the use of natural plants, extracted flavonoids and vitamins. In this review we will briefly explain how the sources of ROS, its essential function in human body, its elevation and associated damage to organs and effect on various diseases, and a hope of finding a way of how this oxidative stress can be exploited for therapeutic potential.


2017 ◽  
Vol 5 (5) ◽  
pp. 686-691 ◽  
Author(s):  
Velid Unsal ◽  
Ergül Belge-Kurutaş

Hepatocellular carcinoma is one of the most common cancers in the world, and it is influenced by agents such as DEN, 2-AAF, phenobarbital, alcohol, aflatoxin B1 metabolite or hepatitis viruses (B and C). Oxidative stress is becoming recognized as a key factor in the progression of hepatocarcinogenesis. Reactive oxygen species can play a leading role in initiation and promotion of hepatic carcinogenesis. The metabolites of DEN Diethylnitrosamine (DEN) mediate the binding of tumour promoters by covalently binding to the DNA with one or two oxidation-providing electrons. 2-AAF is the inducer of DEN, and it is involved in tumour formation in the bladder and liver. Reactive Oxygen species (ROS); carbohydrates, lipids, DNA and enzymes, such as affect all important structures. Additionally, an excessive amount of ROS is highly toxic to cells. Antioxidants are protects against ROS, toxic substances, carcinogens. This review focuses on the literature on studies of Hepatic Carcinogenesis, oxidative stress and antioxidant therapy.


2020 ◽  
pp. 43-49
Author(s):  
A. A. Khisamova ◽  
O. A. Gizinger

Increased physical exertion is a catalyst for oxidative stress and the production of reactive oxygen species, which entails irreversible processes in the body, leading to chronic diseases and disability. This article contains a literature review of studies that prove the effect of the antioxidant properties of Curcuma longa on cells under oxidative stress. To search for data, a wide range of literature and databases was explored: Pubmed, Google.Scholar, and Embase.


Sign in / Sign up

Export Citation Format

Share Document