scholarly journals Anti-Platelet Properties of Phenolic and Nonpolar FractionsIsolated from Various Organs of Elaeagnus rhamnoides (L.) A. Nelson in Whole Blood

2021 ◽  
Vol 22 (6) ◽  
pp. 3282
Author(s):  
Bartosz Skalski ◽  
Joanna Rywaniak ◽  
Aleksandra Szustka ◽  
Jerzy Żuchowski ◽  
Anna Stochmal ◽  
...  

Sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) is a shrub growing in coastal areas. Its organs contain a range of bioactive substances including vitamins, fatty acids, various micro and macro elements, as well as phenolic compounds. Numerous studies of sea buckthorn have found it to have anticancer, anti-ulcer, hepatoprotective, antibacterial, and antiviral properties. Some studies suggest that it also affects the hemostasis system. The aim of the study was to determine the effect of six polyphenols rich and triterpenic acids rich fractions (A–F), taken from various organs of sea buckthorn, on the activation of blood platelets using whole blood, and to assess the effect of the tested fractions on platelet proteins: fraction A (polyphenols rich fraction from fruits), fraction B (triterpenic acids rich fraction from fruits), fraction C (polyphenols rich fraction from leaves), fraction D (triterpenic acids rich fraction from leaves), fraction E (polyphenols rich fraction from twigs), and fraction F (triterpenic acids rich fraction from twigs). Hemostasis parameters were determined using flow cytometry and T-TAS (Total Thrombus-formation Analysis System). Additionally, electrophoresis was performed under reducing and non-reducing conditions. Although all tested fractions inhibit platelet activation, the greatest anti-platelet activity was demonstrated by fraction A, which was rich in flavonol glycosides. In addition, none of the tested fractions (A–F) caused any changes in the platelet proteome, and their anti-platelet potential is not dependent on the P2Y12 receptor.

2021 ◽  
Author(s):  
Agata Rolnik ◽  
Bartosz Skalski ◽  
Jerzy Zuchowski ◽  
Anna Stochmal ◽  
Beata Olas

Abstract Blood platelets play a crucial role in hemostasis, the process responsible for keeping blood flowing in the circulatory system. However, unnecessary platelet activation can lead to aggregation at the site of atherosclerotic plaque rapture and the formation of a thrombus, which promotes atherothrombotic diseases. Various dietary components, such as phenolic compounds, are known to demonstrate antiplatelet and anticoagulant properties, and it is possible that these could form an important element in the prophylaxis and therapy of cardiovascular diseases. Our present study examines the biological activity of isorhamnetin (compound 1) and two isorhamnetin derivatives, compound 2 (3-O-beta-glucoside-7-O-alpha-rhamnoside) and compound 3 (3-O-beta-glucoside-7-O-alpha-(3”’-isovaleryl)-rhamnoside), isolated from the phenolic fraction of sea buckthorn fruit, against human washed blood platelets and human whole blood in vitro. The anti-platelet and anticoagulant potential was determined using (A) flow cytometry, (B) the thrombus-formation analysis system (T-TAS) and (C) colorimetry. The tested flavonoids demonstrated anticoagulant and anti-platelet potential, including anti-adhesive activity, with these effects being more intense in compound 2 than isorhamnetin. Compound 2 inhibited GPIIb/IIIa and P-selectin expression on blood platelets from whole blood, and demonstrated anti-adhesion properties in washed blood platelets and anti-coagulant potential in whole blood, measured by T-TAS.


2021 ◽  
Author(s):  
Bartosz Skalski ◽  
Joanna Rywaniak ◽  
Jerzy Żuchowski ◽  
Anna Stochmal ◽  
Beata Olas

Abstract Uncontrolled blood platelet activation is an important risk factor of cardiovascular disease (CVDs). Various studies on phenolic compounds indicate that they have a protective effect on the cardiovascular system through different mechanisms, including the reduction of blood platelet activation. One of the plants that is particularly rich in phenolic compounds is sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson). The aim of the present study in vitro was to determine the anti-platelet properties of crude extracts isolated from leaves and twigs of E. rhamnoides (L.) A. Nelson in whole blood using flow cytometric and total thrombus-formation analysis system (T-TAS). The aim of our study was also analyze of blood platelet proteoms in the presence of different sea buckthorn extracts. A significant new finding is a decrease surface expression of P-selectin on blood platelets stimulated by 10 µM ADP and 10 µg/mL collagen, and a decrease surface expression of GPIIb/IIIa active complex on non-activated platelets and platelets stimulated by 10 µM ADP and 10 µg/mL collagen in the presence of sea buckthorn leaf extract (especially at the concentration 50 µg/mL). The twig extract also displayed antiplatelet potential. However, this activity was higher in the leaf extract than in the twig extract in whole blood. In addition, our present findings clearly demonstrate that investigated plant extracts have anticoagulant properties (measured by T-TAS). Therefore, the two tested extracts may be promising candidates for the natural anti-platelet and anticoagulant supplements.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuu Oda ◽  
Takashi Ito ◽  
Yoichiro Yamada ◽  
Tadashi Koga ◽  
Tomoka Nagasato ◽  
...  

Abstract Background Rupture of an atherosclerotic plaque and subsequent exposure of the subendothelial prothrombotic matrix to blood cause arterial thrombosis. Circulating platelets play an indispensable role in the growth of arterial thrombi partially owing to their unique ability to adhere to the subendothelial matrix and to aggregate to each other under flow conditions. Recently, the Total Thrombus-formation Analysis System (T-TAS) was developed for ex vivo analysis of the thrombogenic potential of whole blood samples under flow conditions. Despite the potential clinical utility of the T-TAS in assessing the risk for thrombosis and bleeding, reference intervals for T-TAS analysis in healthy individuals have not been determined. Methods In total, 122 whole blood samples were collected from healthy volunteers ranging in age from 25 to 45 years. T-TAS analysis and hematological, physiological, and lifestyle assessments were conducted in these subjects. Whole blood samples anticoagulated with hirudin were perfused into a collagen-coated microchip (PL chip). The time to 10 kPa and the area under the flow pressure curve up to 10 min (AUC10) were analyzed as representative variables for thrombogenic potential. Reference intervals, which were defined as 2.5–97.5 percentiles, were determined. Additionally, univariate and multivariate analyses were performed to identify factors associated with the AUC10 in the T-TAS. Results The time to 10 kPa and the AUC10 widely varied, even in healthy volunteers. The reference intervals were 1.50–4.02 min and 223.4–456.8, respectively, at a shear rate of 1500 s− 1. Univariate and multivariate analyses showed that platelet counts were most significantly associated with the AUC10 of the T-TAS. The presence of one or more cardiovascular risk factors of a high body mass index, a high pulse pressure, high fasting serum glucose levels, high low-density lipoprotein-cholesterol levels, a history of smoking, and no habitual exercise, had the second largest effect on the AUC10 of the T-TAS. Conclusions Healthy volunteers who had any cardiovascular risk factors showed augmented thrombogenicity, even in artificial uniform capillaries, compared with those without any risk factors in the T-TAS.


2021 ◽  
Author(s):  
Agata Rolnik ◽  
Bartosz Skalski ◽  
Anna Stochmal ◽  
Beata Olas

Abstract Increased blood platelet activation plays an important role in cardiovascular diseases (CVDs). Recent experiments indicate that certain fruits and vegetables, including onion, garlic, and beetroot, have anti-platelet potential and therefore may reduce the likelihood of CVDs. While vegetables from the Cucuritaceae family are known to exerting beneficial antioxidant and anti-inflammatory effects, their effects on blood platelet activation are poorly understood. Therefore, the aim of the present study was to determine the effect on platelet adhesion of preparations from selected cucurbits: pumpkin (Cucirbita pepo; fruit without seeds), zucchini (Cucurbita pepo convar. giromontina; fruit with seeds), cucumber (Cucumis sativus; fruit with seeds), white pattypan squash (Cucurbita pepo var. patisoniana; fruit without seeds) and yellow pattypan squash (Cucurbita pepo var. patisoniana, fruit without seeds). It also evaluates the activity of these preparations on enzymatic lipid peroxidation in thrombin-activated washed blood platelets by TBARS assay. The study also determines the anti-platelet and anticoagulant properties of these five cucurbit preparations in whole blood by flow cytometry and with the total thrombus-formation analysis system (T-TAS) and evaluates the cytotoxicity of the tested preparations against platelets based on LDH activity. The results indicate that the yellow Cucurbita pepo var. patisoniana preparation demonstrated stronger anti-platelet properties than the other tested preparations, reducing the adhesion of thrombin-activated platelets to collagen/fibrinogen, and inhibiting arachidonic acid metabolism and GPIIb/IIIa expression on 10 µM ADP-activated platelets. None of the preparations was found to cause platelet lysis. Our findings provide new information on the anti-platelet activity of the tested cucurbit preparations and their potential for treating CVDs associated with platelet hyperactivity.


Blood ◽  
2004 ◽  
Vol 104 (4) ◽  
pp. 1034-1041 ◽  
Author(s):  
Ya-Ping Wu ◽  
Haiko J. Bloemendal ◽  
Emile E. Voest ◽  
Ton Logtenberg ◽  
Philip G. de Groot ◽  
...  

AbstractWhen a blood clot is formed, vitronectin (VN) is incorporated. Here we studied the consequence of VN incorporation for platelet interactions under flow. Perfusion of whole blood over a fibrin network, formed from purified fibrinogen, resulted in approximately 20% surface coverage with blood platelets. Incorporation of purified multimeric VN into the fibrin network resulted in a 2-fold increase in surface coverage with platelets and in enhancement of platelet aggregate formation. A human monoclonal antibody (huMab VN18), directed against the multimeric form of VN, inhibited platelet adhesion to the combined fibrin/VN matrix to the level of adhesion on fibrin alone. This inhibition was also shown when whole blood was perfused over a plasma-derived clot. Surprisingly, the inhibitory action of the antibody was not directed toward VN incorporated into the fibrin network but toward VN released from the platelets. We conclude that VN-potentiated platelet-clot interaction requires VN in the clot and multimeric VN bound to the platelet surface. Our results provide evidence that homotypic VN interactions contribute to platelet adhesion and aggregation to a blood clot. This report demonstrates for the first time that self-assembly of VN may provide a physiologically relevant contribution to platelet aggregation on a blood clot.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3620 ◽  
Author(s):  
Bartosz Skalski ◽  
Bogdan Kontek ◽  
Agata Rolnik ◽  
Beata Olas ◽  
Anna Stochmal ◽  
...  

Sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) is a small tree or bush. It belongs to the Elaeagnaceae family, and has been used for many years in traditional medicine in both Europe and Asia. However, there is no data on the effect of sea buckthorn leaves and twigs on the properties of blood platelets. The aim of the study was to analyze the biological activity of phenolic extracts from leaves and twigs of sea buckthorn in blood platelets in vitro. Two sets of extracts were used: (1) phenolic compounds from twigs and (2) phenolic compounds from leaves. Their biological effects on human blood platelets were studied by blood platelet adhesion, platelet aggregation, arachidonic acid metabolism and the generation of superoxide anion. Cytotoxicity was also evaluated against platelets. The action of extracts from sea buckthorn twigs and leaves was compared to activities of the phenolic extract (a commercial product from the berries of Aronia melanocarpa (Aronox®) with antioxidative and antiplatelet properties. This study is the first to demonstrate that extracts from sea buckthorn leaves and twigs are a source of bioactive compounds which may be used for the prophylaxis and treatment of cardiovascular pathologies associated with blood platelet hyperactivity. Both leaf and twig extracts were found to display anti-platelet activity in vitro. Moreover, the twig extract (rich in proanthocyanidins) displayed better anti-platelet potential than the leaf extract or aronia extract.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agata Rolnik ◽  
Bartosz Skalski ◽  
Anna Stochmal ◽  
Beata Olas

AbstractIncreased blood platelet activation plays an important role in cardiovascular diseases (CVDs). Recent experiments indicate that certain fruits and vegetables, including onion, garlic, and beetroot, have anti-platelet potential and therefore may reduce the likelihood of CVDs. While vegetables from the Cucuritaceae family are known to exerting beneficial antioxidant and anti-inflammatory effects, their effects on blood platelet activation are poorly understood. Therefore, the aim of the present study was to determine the effect on platelet adhesion of preparations from selected cucurbits: pumpkin (Cucurbita pepo; fruit without seeds), zucchini (Cucurbita pepo convar. giromontina; fruit with seeds), cucumber (Cucumis sativus; fruit with seeds), white pattypan squash (Cucurbita pepo var. patisoniana; fruit without seeds) and yellow pattypan squash (Cucurbita pepo var. patisoniana, fruit without seeds). It also evaluates the activity of these preparations on enzymatic lipid peroxidation in thrombin-activated washed blood platelets by TBARS assay. The study also determines the anti-platelet properties of these five cucurbit preparations in whole blood by flow cytometry and with the total thrombus-formation analysis system (T-TAS) and evaluates the cytotoxicity of the tested preparations against platelets based on LDH activity. The results indicate that the yellow Cucurbita pepo var. patisoniana preparation demonstrated stronger anti-platelet properties than the other tested preparations, reducing the adhesion of thrombin-activated platelets to collagen/fibrinogen, and inhibiting arachidonic acid metabolism and GPIIb/IIIa expression on 10 µM ADP-activated platelets. None of the preparations was found to cause platelet lysis. Our findings provide new information on the anti-platelet activity of the tested cucurbit preparations and their potential for treating CVDs associated with platelet hyperactivity.


2021 ◽  
Vol 22 (16) ◽  
pp. 8605
Author(s):  
Joanna Sikora ◽  
Aleksandra Karczmarska-Wódzka ◽  
Joanna Bugieda ◽  
Przemysław Sobczak

Background. Today there are many devices that can be used to study blood clotting disorders by identifying abnormalities in blood platelets. The Total Thrombus Formation Analysis System is an automated microchip flow chamber system that is used for the quantitative analysis of clot formation under blood flow conditions. For several years, researchers have been using a tool to analyse various clinical situations of patients to identify the properties and biochemical processes occurring within platelets and their microenvironment. Methods. An investigation of recent published literature was conducted based on PRISMA. This review includes 52 science papers directly related to the use of the Total Clot Formation Analysis System in relation to bleeding, surgery, platelet function assessment, anticoagulation monitoring, von Willebrand factor and others. Conclusion. Most available studies indicate that The Total Thrombus Formation Analysis System may be useful in diagnostic issues, with devices used to monitor therapy or as a significant tool for predicting bleeding events. However, T-TAS not that has the potential for diagnostic indications, but allows the direct observation of the flow and the interactions between blood cells, including the intensity and dynamics of clot formation. The device is expected to be of significant value for basic research to observe the interactions and changes within platelets and their microenvironment.


2019 ◽  
Vol 119 (10) ◽  
pp. 1554-1562 ◽  
Author(s):  
Koichi Kaikita ◽  
Kazuya Hosokawa ◽  
Jeffrey R. Dahlen ◽  
Kenichi Tsujita

AbstractVarious antithrombotic agents are clinically used to inhibit the cascade of arterial or venous thrombosis in cardiovascular diseases. Dual antiplatelet therapy with aspirin and P2Y12 inhibitors is prescribed in patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI). Direct oral anticoagulants (DOACs) are widely used for the prevention or treatment of thromboembolism in patients with atrial fibrillation (AF) and venous thromboembolism. However, there has been no definitive tool to simultaneously monitor the antithrombotic effects of these drugs. The Total Thrombus-Formation Analysis System (T-TAS), a microchip-based flow chamber system that mimics in vivo conditions for evaluating whole blood thrombogenicity, was developed for the quantitative analysis of thrombus formation in whole blood specimens. The utility of T-TAS has been evaluated in CAD patients treated with antiplatelet therapies. The T-TAS PL chip area under the flow pressure curve (AUC) accurately assesses primary hemostasis and is sensitive to the therapeutic effects of various antiplatelet therapies. In addition, low AUC results are a significant predictor of periprocedural bleeding events in CAD patients undergoing PCI. The T-TAS AR chip AUC result is useful for assessing the efficacy of DOACs and warfarin in AF patients undergoing catheter ablation, and it is also a potential independent predictor of periprocedural bleeding events and avoidance of thrombosis in patients having undergone total knee arthroplasty. In conclusion, T-TAS is a useful index for evaluating the total antithrombotic effects of combination antithrombotic agents in patients with various cardiovascular diseases.


Author(s):  
E. T. O'Toole ◽  
R. R. Hantgan ◽  
J. C. Lewis

Thrombocytes (TC), the avian equivalent of blood platelets, support hemostasis by aggregating at sites of injury. Studies in our lab suggested that fibrinogen (fib) is a requisite cofactor for TC aggregation but operates by an undefined mechanism. To study the interaction of fib with TC and to identify fib receptors on cells, fib was purified from pigeon plasma, conjugated to colloidal gold and used both to facilitate aggregation and as a receptor probe. Described is the application of computer assisted reconstruction and stereo whole mount microscopy to visualize the 3-D organization of fib receptors at sites of cell contact in TC aggregates and on adherent cells.Pigeon TC were obtained from citrated whole blood by differential centrifugation, washed with Ca++ free Hank's balanced salts containing 0.3% EDTA (pH 6.5) and resuspended in Ca++ free Hank's. Pigeon fib was isolated by precipitation with PEG-1000 and the purity assessed by SDS-PAGE. Fib was conjugated to 25nm colloidal gold by vortexing and the conjugates used as the ligand to identify fib receptors.


Sign in / Sign up

Export Citation Format

Share Document