scholarly journals Biological Properties and Prospects for the Application of Eugenol—A Review

2021 ◽  
Vol 22 (7) ◽  
pp. 3671
Author(s):  
Magdalena Ulanowska ◽  
Beata Olas

Eugenol is a phenolic aromatic compound obtained mainly from clove oil. Due to its known antibacterial, antiviral, antifungal, anticancer, anti-inflammatory and antioxidant properties, it has long been used in various areas, such as cosmetology, medicine, and pharmacology. However, high concentrations can be toxic. A dose of 2.5 mg/kg body weight is regarded as safe. This paper reviews the current state of knowledge regarding the activities and application of eugenol and its derivatives and recent research of these compounds. This review is based on information concerning eugenol characteristics and recent research from articles in PubMed. Eugenol remains of great interest to researchers, since its multidirectional action allows it to be a potential component of drugs and other products with therapeutic potential against a range of diseases.

2021 ◽  
Vol 14 (5) ◽  
pp. 428
Author(s):  
Douglas Kemboi Magozwi ◽  
Mmabatho Dinala ◽  
Nthabiseng Mokwana ◽  
Xavier Siwe-Noundou ◽  
Rui W. M. Krause ◽  
...  

Plants of the genus Euphorbia are widely distributed across temperate, tropical and subtropical regions of South America, Asia and Africa with established Ayurvedic, Chinese and Malay ethnomedical records. The present review reports the isolation, occurrence, phytochemistry, biological properties, therapeutic potential and structure–activity relationship of Euphorbia flavonoids for the period covering 2000–2020, while identifying potential areas for future studies aimed at development of new therapeutic agents from these plants. The findings suggest that the extracts and isolated flavonoids possess anticancer, antiproliferative, antimalarial, antibacterial, anti-venom, anti-inflammatory, anti-hepatitis and antioxidant properties and have different mechanisms of action against cancer cells. Of the investigated species, over 80 different types of flavonoids have been isolated to date. Most of the isolated flavonoids were flavonols and comprised simple O-substitution patterns, C-methylation and prenylation. Others had a glycoside, glycosidic linkages and a carbohydrate attached at either C-3 or C-7, and were designated as d-glucose, l-rhamnose or glucorhamnose. The structure–activity relationship studies showed that methylation of the hydroxyl groups on C-3 or C-7 reduces the activities while glycosylation loses the activity and that the parent skeletal structure is essential in retaining the activity. These constituents can therefore offer potential alternative scaffolds towards development of new Euphorbia-based therapeutic agents.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


Author(s):  
Fatima Khan ◽  
Mohd Nayab ◽  
Abdul Nasir Ansari

Ginger has been appreciated for over 2500-3000 years in many parts of the world due to its numerous scientific properties. The ginger plant (Zingiber officinale Roscoe) belongs to the Zingiberaceae family. It is a known food and flavoring ingredient reputed for its wide range of medicinal properties that have been widely used in Chinese, Ayurvedic, and Unāni Tibb worldwide, since antiquity. Ginger has long been used to cure a variety of ailments, including diarrhea, stomach discomfort, indigestion, and nausea. It is a versatile herb with phenomenal phytotherapeutic and medicinal properties. Active ingredients available in ginger such as 6-gingerol, 6-shogaol, 6-paradol, and zingerone are responsible for upgrading enzyme actions and balancing circulation through rejuvenating the body with physical re-strengthening. Gingerols, the key phenolic plant secondary metabolites responsible for its distinct flavor and health benefits, are found in the rhizome of ginger Extensive study has been undertaken over the last two decades to uncover bioactive ingredients and the therapeutic potential of ginger. This review considers ginger's chemical composition and the most recent study findings on its possible health advantages, such as analgesic, anti-inflammatory, antibacterial, and antioxidant properties due to its phytochemistry. Overall, clinical trials are needed to confirm these prospective various health advantages of ginger in human subjects and the most efficacious dosage, based on the current body of scientific literature.


2020 ◽  
pp. 53-57

The objective was to determine the effect of Brassica oleracea var Botrytis "cauliflower" inflorescences on cachectic syndrome in Mus musculus var. swiss with induced cancer. Cachectic syndrome is characterized by progressive loss of body weight, anorexia, asthenia, immunosuppression and metabolism of carbohydrates, lipids and proteins, with loss of muscle and adipose tissue. It used dry cauliflower inflorescence extract (ESC) and male mice 35-45 g with induced cancer, divided into groups: G1 untreated control, G2 and G3 treated with ESC, doses 10 and 20mg/kg/bw/vo and G4 treated with quercitin, dose 7.14mg/Kg/bw/vo for 90 days. Some manifestations of cachectic syndrome were determined. It was observed that G1 had thinning and progressive increase in alopecia, asthenia and conjunctival xerosis due to energy and metabolic imbalance compared to G2, G3 and G4 that had higher body weight and fewer cachectic manifestations, being significant by time and treatment group (P<0.01). It has been reported that cauliflower contains flavonoids quercitin and kaemferol, with anti-inflammatory properties for its action on cyclooxygenase, lipooxygenase, interleukins and chemosins, with antioxidant properties on intracellular glutathione, in redox reactions and favoring the expression of caspases in cell apoptosis. Therefore, it is concluded that cauliflower prevents body weight loss and decreases cachectic syndrome because it contains kaempferol and quercitin that act synergistically with anti-inflammatory, antioxidant and anticancer properties.


2020 ◽  
Vol 67 (4) ◽  
pp. 1035-1043
Author(s):  
Taras I. Chaban ◽  
Yulia E. Matiichuk ◽  
Olga Ya. Shyyka ◽  
Ihor G. Chaban ◽  
Volodymyr V. Ogurtsov ◽  
...  

The synthesis, anti-inflammatory and antioxidant properties of novel 5-hydroxy-7-methyl-3H-thiazolo[4,5-b]pyridin-2-one derivatives were discussed. Fused thiazolo[4,5-b]pyridin-2-ones were synthesized and modified at the N3, C5 and C6 positions of the main core in order to obtain the compounds with a satisfactory pharmacological profile. The synthesized compounds were preselected via molecular docking for further testing of their anti-inflammatory activity in vitro. Evaluation of novel compounds over the carageenin induced rat paw edema revealed strong anti-inflammatory action of some compounds including (thiazolo[4,5-b]pyridin-3(2H)-yl) propanenitrile (5) and thiazolo[4,5-b]pyridin-3(2H)-yl) propanoic acid (6) even exceeding the standard – Ibuprofen. The antioxidant activity of the synthesized compounds was measured in vitro by the method of scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals.


2019 ◽  
Vol 20 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Carl Randall Harrell ◽  
Crissy Fellabaum ◽  
Bojana Simovic Markovic ◽  
Aleksandar Arsenijevic ◽  
Vladislav Volarevic

Abstract Due to their differentiation capacity and potent immunosuppressive and pro-angiogenic properties, mesenchymal stem cells (MSCs) have been considered as new therapeutic agents in regenerative medicine. Since most of MSC-mediated beneficent effects are a consequence of their paracrine action, we designed MSC-based product “Exosomes Derived Multiple Allogeneic Proteins Paracrine Signaling (Exosomes d-MAPPS), which activity is based on MSCs-derived growth factors and immunomodulatory cytokines capable to attenuate inflammation and to promote regeneration of injured tissues. Interleukin 1 receptor antagonist (IL-1Ra) and IL-27 were found in high concentrations in Exosomes d-MAPPS samples indicating strong anti-inflammatory and immunosuppressive potential of Exosomes d-MAPPS. Additionally, high concentrations of vascular endothelial growth factor receptor (VEGFR1) and chemokines (CXCL16, CCL21, CXCL14) were noticed at Exosomes d-MAPPS samples suggesting their potential to promote generation of new blood vessels and migration of CXCR6, CCR7 and CXCR4 expressing cells. Since all proteins which were found in high concentration in Exosomes d-MAPPS samples (IL-1Ra, CXCL16, CXCL14, CCL21, IL-27 and VEGFR1) are involved in modulation of lung, eye, and synovial inflammation, Exosomes d-MAPPS samples were prepared as inhalation and ophthalmic solutions in addition to injection formulations; their application in several patients suffering from chronic obstructive pulmonary disease, osteoarthritis, and dry eye syndrome resulted with significant improvement of biochemical and functional parameters. In conclusion, Exosomes d-MAPPS, due to the presence of important anti-inflammatory, immunomodulatory, and pro-angiogenic factors, represents potentially new therapeutic agent in regenerative medicine that should be further tested in large clinical studies.


2017 ◽  
Vol 15 (1) ◽  
pp. 82-91
Author(s):  
Daniela Batista ◽  
Pedro L. Falé ◽  
Maria L. Serralheiro ◽  
Maria-Eduarda Araújo ◽  
Catarina Dias ◽  
...  

AbstractPlants belonging to the genus Salvia (Lamiaceae) are known to have a wide range of biological properties. In this work, extracts obtained from the aerial parts of Salvia sclareoides Brot. were evaluated to investigate their chemical composition, toxicity, bioactivity, and stability under in vitro gastrointestinal conditions. The composition of the supercritical fluid extract was determined by GC and GC-MS, while the identification of the infusion constituents was performed by HPLC-DAD and LC-MS. The in vitro cytotoxicity of both extracts (0-2 mg/mL) was evaluated in Caco-2 cell lines by the MTT assay. The anti-inflammatory and anticholinesterase activities were determined through the inhibition of cyclooxygenase-1 and acetylcholinesterase enzymes, while β-carotene/linoleic acid bleaching test and the DPPH assays were used to evaluate the antioxidant activity. The infusion inhibited cyclooxygenase-1 (IC50 = 271.0 μg/mL), and acetylcholinesterase (IC50 = 487.7 μg/ mL) enzymes, also demonstrated significant antioxidant properties, as evaluated by the DPPH (IC50 = 10.4 μg/mL) and β-carotene/linoleic acid (IC50 = 30.0 μg/mL) assays. No remarkable alterations in the composition or in the bioactivities of the infusion were observed after in vitro digestion, which supports the potential of S. sclareoides as a source of bioactive ingredients with neuroprotective, anti-inflammatory and antioxidant properties.


2021 ◽  
Vol 19 ◽  
Author(s):  
Hasan Turkez ◽  
Mehmet Enes Arslan ◽  
Joice Nascimento Barboza ◽  
Cigdem Yuce Kahraman ◽  
Damiao Pergentino de Sousa ◽  
...  

Abstract: Alzheimer's Disease (AD) is one of the most important neurodegenerative diseases and it covers 60% of whole dementia cases. AD is a constantly progressing neurodegenerative disease as a result of the production of β-amyloid (Aβ) protein and the accumulation of hyper-phosphorylated Tau protein; it causes breakages in the synaptic bonds and neuronal deaths to a large extent. Millions of people worldwide suffer from AD because there is no definitive drug for disease prevention, treatment or slowdown. Over the last decade, multiple target applications have been developed for AD treatments. These targets include Aβ accumulations, hyper-phosphorylated Tau proteins, mitochondrial dysfunction, and oxidative stress resulting in toxicity. Various natural or semisynthetic antioxidant formulations have been shown to protect brain cells from Aβ induced toxicity and provide promising potentials for AD treatment. Ferulic acid (FA), a high-capacity antioxidant molecule, is naturally synthesized from certain plants. FA has been shown to have different substantial biological properties, such as anticancer, antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and cardioprotective actions, etc. Furthermore, FA exerted neuroprotection via preventing Aβ-fibril formation, acting as an anti-inflammatory agent, and inhibiting free radical generation and acetylcholinesterase (AChE) enzyme activity. In this review, we present key biological roles of FA and several FA derivatives in Aβ-induced neurotoxicity, protection against free radical attacks, and enzyme inhibitions and describe them as possible therapeutic agents for the treatment of AD.


2020 ◽  
Vol 21 (14) ◽  
pp. 4850 ◽  
Author(s):  
Cristiane F. Villarreal ◽  
Dourivaldo S. Santos ◽  
Pedro S. S. Lauria ◽  
Kelly B. Gama ◽  
Renan F. Espírito-Santo ◽  
...  

Diabetic neuropathy is a frequent complication of diabetes. Symptoms include neuropathic pain and sensory alterations—no effective treatments are currently available. This work characterized the therapeutic effect of bergenin in a mouse (C57/BL6) model of streptozotocin-induced painful diabetic neuropathy. Nociceptive thresholds were assessed by the von Frey test. Cytokines, antioxidant genes, and oxidative stress markers were measured in nervous tissues by ELISA, RT-qPCR, and biochemical analyses. Single (3.125–25 mg/kg) or multiple (25 mg/kg; twice a day for 14 days) treatments with bergenin reduced the behavioral signs of diabetic neuropathy in mice. Bergenin reduced both nitric oxide (NO) production in vitro and malondialdehyde (MDA)/nitrite amounts in vivo. These antioxidant properties can be attributed to the modulation of gene expression by the downregulation of inducible nitric oxide synthase (iNOS) and upregulation of glutathione peroxidase and Nrf2 in the nervous system. Bergenin also modulated the pro- and anti-inflammatory cytokines production in neuropathic mice. The long-lasting antinociceptive effect induced by bergenin in neuropathic mice, was associated with a shift of the cytokine balance toward anti-inflammatory predominance and upregulation of antioxidant pathways, favoring the reestablishment of redox and immune homeostasis in the nervous system. These results point to the therapeutic potential of bergenin in the treatment of painful diabetic neuropathy.


2021 ◽  
Author(s):  
MERCY BADU ◽  
Blessed Agbemade ◽  
Ransford Boateng ◽  
Isaac Amponsah ◽  
Vivian Boamah

Abstract This study sought to explore the medicinal properties of extracts obtained from C. edulis seeds. The seeds were obtained from farms in the Upper East Region of Ghana, dried and milled into coarse powder. Petroleum ether, ethyl acetate and methanol were used to extract the bioactive compounds present in the seeds by the cold maceration method. Antioxidant properties of the extracts were evaluated using the Phosphomolybdenum and DPPH free radical scavenging assays. The Folin-Ciocalteu assay was used to estimate the total phenol content and carrageenan-induced paw oedema model in chicks employed for the anti-inflammatory effects. The results showed that methanol extract had the highest antioxidant and anti-inflammatory activities while the petroleum ether extract showed the least activity. The anti-inflammatory activity of the methanol extract (31.3% oedema inhibition at 300 mg/kg body weight) was however lower than diclofenac (54.04% oedema inhibition at 100 mg/kg body weight), the reference drug. Compounds such as tannins, alkaloids, and carotenoids detected during phytochemical screening may be responsible for the activities observed.


Sign in / Sign up

Export Citation Format

Share Document