scholarly journals Putrescine Depletion Affects Arabidopsis Root Meristem Size by Modulating Auxin and Cytokinin Signaling and ROS Accumulation

2021 ◽  
Vol 22 (8) ◽  
pp. 4094
Author(s):  
Ahmed M. Hashem ◽  
Simon Moore ◽  
Shangjian Chen ◽  
Chenchen Hu ◽  
Qing Zhao ◽  
...  

Polyamines (PAs) dramatically affect root architecture and development, mainly by unknown mechanisms; however, accumulating evidence points to hormone signaling and reactive oxygen species (ROS) as candidate mechanisms. To test this hypothesis, PA levels were modified by progressively reducing ADC1/2 activity and Put levels, and then changes in root meristematic zone (MZ) size, ROS, and auxin and cytokinin (CK) signaling were investigated. Decreasing putrescine resulted in an interesting inverted-U-trend in primary root growth and a similar trend in MZ size, and differential changes in putrescine (Put), spermidine (Spd), and combined spermine (Spm) plus thermospermine (Tspm) levels. At low Put concentrations, ROS accumulation increased coincidently with decreasing MZ size, and treatment with ROS scavenger KI partially rescued this phenotype. Analysis of double AtrbohD/F loss-of-function mutants indicated that NADPH oxidases were not involved in H2O2 accumulation and that elevated ROS levels were due to changes in PA back-conversion, terminal catabolism, PA ROS scavenging, or another pathway. Decreasing Put resulted in a non-linear trend in auxin signaling, whereas CK signaling decreased, re-balancing auxin and CK signaling. Different levels of Put modulated the expression of PIN1 and PIN2 auxin transporters, indicating changes to auxin distribution. These data strongly suggest that PAs modulate MZ size through both hormone signaling and ROS accumulation in Arabidopsis.

2021 ◽  
Author(s):  
Blanca Salazar-Sarasua ◽  
María Jesús López-Martín ◽  
Edelín Roque ◽  
Rim Hamza ◽  
Luis Antonio Cañas ◽  
...  

ABSTRACTThe tapetum is a specialized layer of cells within the anther adjacent to the sporogenic tissue. During its short life, it provides nutrients, molecules and materials to the pollen mother cells and microsporocytes being essential during callose degradation and pollen wall formation. However, the acquisition of tapetal cell identity in tomato plants is a process still poorly understood. We report here the identification and characterization of SlTPD1 (Solanum lycopersicum TPD1), a gene specifically required for pollen development in tomato plants. Gene editing was used to generate loss-of-function Sltpd1 mutants that showed absence of tapetal tissue. In these plants, sporogenous cells developed but failed to complete meiosis resulting in complete male sterility. Transcriptomic analysis conducted in wild-type and mutant anthers at an early stage revealed the down regulation of a set of genes related to redox homeostasis. Indeed, Sltpd1 anthers showed a reduction of reactive oxygen species (ROS) accumulation at early stages and altered activity of ROS scavenging enzymes. The obtained results highlight the importance of ROS homeostasis in the interaction between the tapetum and the sporogenous tissue in tomato plants.One sentence summaryThe small protein SlTPD1 is required for tapetum formation in tomato, highlighting the role of this tissue in the regulation of redox homeostasis during male gametogenesis.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1233 ◽  
Author(s):  
Onnicha Pongwattanakewin ◽  
The Phyu ◽  
Suchanya Suesattayapirom ◽  
Laran Jensen ◽  
Amornrat Jensen

Artemisinins are widely used to treat Plasmodium infections due to their high clinical efficacy; however, the antimalarial mechanism of artemisinin remains unresolved. Mutations in P. falciparum ATPase6 (PfATP6), a sarcoplasmic endoplasmic reticulum Ca2+-transporting ATPase, are associated with increased tolerance to artemisinin. We utilized Saccharomyces cerevisiae as a model to examine the involvement of Pmr1p, a functional homolog of PfATP6, on the toxicity of artemisinin. Our analysis demonstrated that cells lacking Pmr1p are less susceptible to growth inhibition from artemisinin and its derivatives. No association between sensitivity to artemisinin and altered trafficking of the drug efflux pump Pdr5p, calcium homeostasis, or protein glycosylation was found in pmr1∆ yeast. Basal ROS levels are elevated in pmr1∆ yeast and artemisinin exposure does not enhance ROS accumulation. This is in contrast to WT cells that exhibit a significant increase in ROS production following treatment with artemisinin. Yeast deleted for PMR1 are known to accumulate excess manganese ions that can function as ROS-scavenging molecules, but no correlation between manganese content and artemisinin resistance was observed. We propose that loss of function mutations in Pmr1p in yeast cells and PfATP6 in P. falciparum are protective against artemisinin toxicity due to reduced intracellular oxidative damage.


Author(s):  
Bradley R. Dotson ◽  
Vasiliki Verschut ◽  
Klas Flärdh ◽  
Paul G. Becher ◽  
Allan G. Rasmusson

AbstractPlants enhance their growth in the presence of particular soil bacteria due to volatile compounds affecting the homeostasis of plant growth hormones. However, the mechanisms of volatile compound signaling and plant perception has been unclear. This study identifies the bioactive volatile 3-octanone as a plant growth stimulating volatile, constitutively emitted by the soil bacterium Streptomyces coelicolor grown on a rich medium. When 3-octanone is applied to developing Arabidopsis thaliana seedlings, a family-wide induction of the Kelch-repeat F-box genes known as KISS ME DEADLY (KMD) subsequently alters auxin/cytokinin homeostasis to promote the growth of lateral roots and inhibit the primary root. Loss of function of the KMD family or other alterations of auxin/cytokinin homeostasis suppresses the volatile-induced growth response. This reveals a function of KMDs in the pathway of microbial volatile perception and plant growth responses.Significance StatementVolatiles from soil microbes are profound stimulators of plant growth. This work identifies for the first time a plant hormone signaling regulator, the gene family KISS ME DEADLY (KMD), to be an early essential step in plant growth promotion by a soil bacterial volatile, 3-octanone. The KMD-regulated gene network alters the tissue sensitivity balance for the growth hormones auxin and cytokinin, modifying root growth rate and architecture. Previously, the Kelch repeat F-box gene family of KMDs have been shown to be important down-regulators of both positive cytokinin signaling and phenylpropanoid biosynthesis, but upstream cues were unknown. This report places the KMD family regulation of plant growth and defense into its biotic context.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Anne-Cécile Ribou ◽  
Klaus Reinhardt

Abstract Objective Sperm ageing has major evolutionary implications but has received comparatively little attention. Ageing in sperm and other cells is driven largely by oxidative damage from reactive oxygen species (ROS) generated by the mitochondria. Rates of organismal ageing differ across species and are theorized to be linked to somatic ROS levels. However, it is unknown whether sperm ageing rates are correlated with organismal ageing rates. Here, we investigate this question by comparing sperm ROS production in four lines of Drosophila melanogaster that have previously been shown to differ in somatic mitochondrial ROS production, including two commonly used wild-type lines and two lines with genetic modifications standardly used in ageing research. Results Somatic ROS production was previously shown to be lower in wild-type Oregon-R than in wild-type Dahomey flies; decreased by the expression of alternative oxidase (AOX), a protein that shortens the electron transport chain; and increased by a loss-of-function mutation in dj-1β, a gene involved in ROS scavenging. Contrary to predictions, we found no differences among these four lines in the rate of sperm ROS production. We discuss the implications of our results, the limitations of our study, and possible directions for future research.


2021 ◽  
Vol 16 (4) ◽  
pp. 1879542
Author(s):  
Ernesto Vázquez-Chimalhua ◽  
Salvador Barrera-Ortiz ◽  
Eduardo Valencia-Cantero ◽  
José López-Bucio ◽  
León Francisco Ruiz-Herrera

2021 ◽  
Vol 12 ◽  
Author(s):  
Jae Yong Yoo ◽  
Ki Seong Ko ◽  
Bich Ngoc Vu ◽  
Young Eun Lee ◽  
Seok Han Yoon ◽  
...  

Alpha-1,6-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase [EC 2.4.1.143, N-acetylglucosaminyltransferase II (GnTII)] catalyzes the transfer of N-acetylglucosamine (GlcNAc) residue from the nucleotide sugar donor UDP-GlcNAc to the α1,6-mannose residue of the di-antennary N-glycan acceptor GlcNAc(Xyl)Man3(Fuc)GlcNAc2 in the Golgi apparatus. Although the formation of the GlcNAc2(Xyl)Man3(Fuc)GlcNAc2 N-glycan is known to be associated with GnTII activity in Arabidopsis thaliana, its physiological significance is still not fully understood in plants. To address the physiological importance of the GlcNAc2(Xyl)Man3(Fuc)GlcNAc2 N-glycan, we examined the phenotypic effects of loss-of-function mutations in GnTII in the presence and absence of stress, and responsiveness to phytohormones. Prolonged stress induced by tunicamycin (TM) or sodium chloride (NaCl) treatment increased GnTII expression in wild-type Arabidopsis (ecotype Col-0) but caused severe developmental damage in GnTII loss-of-function mutants (gnt2-1 and gnt2-2). The absence of the 6-arm GlcNAc residue in the N-glycans in gnt2-1 facilitated the TM-induced unfolded protein response, accelerated dark-induced leaf senescence, and reduced cytokinin signaling, as well as susceptibility to cytokinin-induced root growth inhibition. Furthermore, gnt2-1 and gnt2-2 seedlings exhibited enhanced N-1-naphthylphthalamic acid-induced inhibition of tropic growth and development. Thus, GnTII’s promotion of the 6-arm GlcNAc addition to N-glycans is important for plant growth and development under stress conditions, possibly via affecting glycoprotein folding and/or distribution.


2018 ◽  
Vol 115 (26) ◽  
pp. 6864-6869 ◽  
Author(s):  
Mohamad Abbas ◽  
Jorge Hernández-García ◽  
Stephan Pollmann ◽  
Sophia L. Samodelov ◽  
Martina Kolb ◽  
...  

Asymmetric auxin distribution is instrumental for the differential growth that causes organ bending on tropic stimuli and curvatures during plant development. Local differences in auxin concentrations are achieved mainly by polarized cellular distribution of PIN auxin transporters, but whether other mechanisms involving auxin homeostasis are also relevant for the formation of auxin gradients is not clear. Here we show that auxin methylation is required for asymmetric auxin distribution across the hypocotyl, particularly during its response to gravity. We found that loss-of-function mutants inArabidopsis IAA CARBOXYL METHYLTRANSFERASE1(IAMT1) prematurely unfold the apical hook, and that their hypocotyls are impaired in gravitropic reorientation. This defect is linked to an auxin-dependent increase inPINgene expression, leading to an increased polar auxin transport and lack of asymmetric distribution of PIN3 in theiamt1mutant. Gravitropic reorientation in theiamt1mutant could be restored with either endodermis-specific expression ofIAMT1or partial inhibition of polar auxin transport, which also results in normalPINgene expression levels. We propose that IAA methylation is necessary in gravity-sensing cells to restrict polar auxin transport within the range of auxin levels that allow for differential responses.


2019 ◽  
Vol 20 (8) ◽  
pp. 2043
Author(s):  
Yanan Wang ◽  
Xiyu Zhang ◽  
Yanjiao Cui ◽  
Lei Li ◽  
Dan Wang ◽  
...  

Leaf senescence is a highly-programmed developmental process regulated by an array of multiple signaling pathways. Our group previously reported that overexpression of the protein phosphatase-encoding gene SSPP led to delayed leaf senescence and significantly enhanced cytokinin responses. However, it is still unclear how the delayed leaf senescence phenotype is associated with the enhanced cytokinin responses. In this study, we introduced a cytokinin receptor AHK3 knockout into the 35S:SSPP background. The phenotypic analysis of double mutant revealed that AHK3 loss-of-function reversed the delayed leaf senescence induced by SSPP. Moreover, we found the hypersensitivity of 35S:SSPP to exogenous cytokinin treatment disappeared due to the introduction of AHK3 knockout. Collectively, our results demonstrated that AHK3-mediated cytokinin signaling is required for the delayed leaf senescence caused by SSPP overexpression and the detailed mechanism remains to be further elucidated.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 213
Author(s):  
Yu Xu ◽  
Junjie Zou ◽  
Hongyan Zheng ◽  
Miaoyun Xu ◽  
Xuefeng Zong ◽  
...  

Flavonoids play important roles in root development and in its tropic responses, whereas the flavonoids-mediated changes of the global transcription levels during root growth remain unclear. Here, the global transcription changes in quercetin-treated rice primary roots were analyzed. Quercetin treatment significantly induced the inhibition of root growth and the reduction of H2O2 and O2− levels. In addition, the RNA-seq analysis revealed that there are 1243 differentially expressed genes (DEGs) identified in quercetin-treated roots, including 1032 up-regulated and 211 down-regulated genes. A gene ontology (GO) enrichment analysis showed that the enriched GO terms are mainly associated with the cell wall organization, response to oxidative stress, and response to hormone stimulus. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analysis showed that the enriched DEGs are involved in phenylpropanoid biosynthesis, glutathione metabolism, and plant hormone signal transduction. Moreover, the quercetin treatment led to an increase of the antioxidant enzyme activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in rice roots. Also, the quercetin treatment altered the DR5:GUS expression pattern in the root tips. All of these data indicated that the flavonoids-mediated transcription changes of genes are related to the genes involved in cell wall remodeling, redox homeostasis, and auxin signaling, leading to a reduced cell division in the meristem zone and cell elongation in the elongation zone of roots.


Sign in / Sign up

Export Citation Format

Share Document